

Page 1 of 26

CHARGE COUPLED DEVICES, SILICON, PHOTOSENSITIVE, ADVANCED INVERTED MODE SENSOR, BACK ILLUMINATED, 740 X 514 IMAGE AREA, FRAME TRANSFER

BASED ON TYPE CCD55-20

ESCC Detail Specification No. 9610/004

Issue 2	April 2014

Document Custodian: European Space Agency – see https://escies.org

PAGE 2

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2014. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

PAGE 3

ISSUE 2

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
849	Specification upissued to incorporate editorial changes per DCR.

ISSUE 2

TABLE OF CONTENTS

1	GENERAL	6
1.1	SCOPE	6
1.2	APPLICABLE DOCUMENTS	6
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	6
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	6
1.4.1	The ESCC Component Number	6
1.4.2	Component Type Variants	6
1.5	MAXIMUM RATINGS	7
1.6	HANDLING PRECAUTIONS	7
1.7	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	8
1.7.1	Pin Grid Array (PGA) - 22 Pin	8
1.7.2	Geometrical References	9
1.8	FUNCTIONAL DIAGRAM	10
1.9	PIN ASSIGNMENT	11
1.10	TIMING DIAGRAMS	12
1.11	INPUT PROTECTION NETWORK	14
1.12	MATERIALS AND FINISHES	14
2	REQUIREMENTS	14
2.1	GENERAL	14
2.1.1	Deviations from the Generic Specification	14
2.1.1.1	Devations from Production Control	14
2.1.1.2	Deviations from Special In-Process Controls - Chart F2	15
2.1.1.3	Deviations from Qualification and Periodic Tests - Chart F4	15
2.1.1.4	Deviations from Data Documentation Report	15
2.2	MARKING	15
2.3	ELECTRICAL MEASUREMENTS AT REFERENCE, HIGH AND LOW TEMPERATURES	15
2.3.1	Reference Temperature Electrical Measurements	15
2.3.2	High and Low Temperatures Electrical Measurements	17
2.3.3	Notes to Electrical Measurement Tables	17
2.4	PARAMETER DRIFT VALUES	20
2.5	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	20
2.6	BURN-IN CONDITIONS	22
2.7	OPERATING LIFE CONDITIONS	23
2.8	TOTAL DOSE RADIATION TESTING	23
2.8.1	Bias Conditions and Total Dose Level for Total Dose Radiation Testing	23

ISSUE 2

2.8.2	Electrical Measurements for Total Dose Radiation Testing	24
APPENDI	XA	26

ISSUE 2

1 <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical, electro-optical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 <u>APPLICABLE DOCUMENTS</u>

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 9020.
- (b) ESCC 25000, Electro-optical Test Methods for Charge Coupled Devices.
- (c) MIL-STD-883, Test Methods and Procedures for Microelectronics.

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 <u>The ESCC Component Number</u>

The ESCC Component number shall be constituted as follows:

Example: 961000401D

- Detail Specification Reference: 9610004
- Component Type Variant Number: 01 (as required)
- Total Dose Radiation Level Letter: D (as required)

1.4.2 Component Type Variants

The component type variants applicable to this specification are as follows:

Variant Number	Based on Type	Reference Temperature T _{ref} (°C)	Case	Weight Max (g)	Total Dose Radiation Level Letter	Number of Thermistors per Device
01	CCD55-20-*-B18	+5	PGA	35	D [10kRAD(Si)]	2
02	CCD55-20-*-C61	+5	PGA	35	D [10kRAD(Si)]	0

Total dose radiation level letters are defined in ESCC Basic Specification No. 22900. If an alternative radiation test level is specified in the Purchase Order the letter shall be changed accordingly.

No. 9610/004

ISSUE 2

1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

Characteristics	Symbols	Maximum Ratings	Units	Remarks
Input Voltage	V _{IN}	-20 to +20	V	Notes 1, 3
		-0.3 to +25		Notes 2, 3
Input Voltage, Pin OD	V _{IN}	-0.3 to +35	V	Notes 3, 4
Output Voltage, Pin OS	V _{OUT}	-0.3 to +25	V	Notes 3, 4
Thermistor Maximum Voltage Difference	-	Note 5	-	Not applicable to Variant 02
Operating Temperature Range	T _{op}	-55 to +50	°C	Note 6
Storage Temperature Range	T _{stg}	-55 to +125	°C	
Rate of Change of Temperature	-	5	°C/min	Note 7

NOTES:

- For input pins ΦR, IΦn, RΦn, SΦn, IG, DG, OG. 1.
- For input pins RD, DD. 2.
- With respect to V_{SS}. 3.
- 4. Maximum voltage applied between OD and OS shall not exceed ±15V.
- Maximum voltage difference across T1+ and T1- and T2+ and T2- shall be such that the 5. thermistor temperature does not exceed 150°C (given that 1mW raises T by 1°C). Device is functional for -55 $\leq T_{op} \leq +125$ °C but with degraded performance. Parameters are
- 6. not guaranteed in this temperature range.
- 7. Rate of change of temperature is applicable over the operating and storage (non-operating) temperature ranges.

1.6 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 1 per ESCC Basic Specification No. 23800.

1.7 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

1.7.1 Pin Grid Array (PGA) - 22 Pin

NOTES:

- 1. All dimensions in mm.
- 2. Pin numbers shown for identification purposes only.

ISSUE 2

1.7.2 <u>Geometrical References</u>

X and Y define the centre of the 576 x 780 array of active elements. X and Y' define the centre of the minimum imaging 514 x 740 pixels. A, B and C are measured from the optical references. $X = A + 10.10, X = 20 \pm 0.45$ $Y = C - 6.39, Y = 9.72 \pm 0.25, Y' = Y - 0.09$

NOTES:

1. All dimensions in mm.

PAGE 10

ISSUE 2

1.8 FUNCTIONAL DIAGRAM

ISSUE 2

1.9	PIN ASSIGNMENT
1.0	

Pin	Function
1	RФ3 Input (Readout Register Clock)
2	RΦ2 Input (Readout Register Clock)
3	SΦ3 Input (Storage Section Clock)
4	SФ2 Input (Storage Section Clock)
5	SФ1 Input (Storage Section Clock)
6	DG Input (Dump Gate)
7	IG Input (Isolation Gate)
8	OD Input (Output Transistor Drain)
9	OG input (Output Gate)
10	RD Input (Reset Transistor Drain)
11	OS Output (Output Transistor Source)
12	DD Input (Dump Drain)
13	V _{SS} (Substrate Bias)
14	IΦ1 Input (Image Section Clock)
15	IΦ2 Input (Image Section Clock)
16	IΦ3 Input (Image Section Clock)
17	ΦR Input (Output Reset Pulse)
18	RΦ1 Input (Readout Register Clock)
19	Variant 01 = T1 + Output (Thermistor) ; Variant 02 = No Connection
20	Variant 01 = T1 - Output (Thermistor) ; Variant 02 = No Connection
21	Variant 01 = T2 + Output (Thermistor) ; Variant 02 = No Connection
22	Variant 01 = T2 - Output (Thermistor) ; Variant 02 = No Connection

PAGE 12

ISSUE 2

1.10 <u>TIMING DIAGRAMS</u>

PAGE 13

ISSUE 2

Detail of Vertical Line Transfer – Single line dump

Drive Pulse Waveform

NOTES:

- 1. Pulses should be symmetrical and overlap at 50% points, as shown.
- 2. Rise and fall times (t_r, t_f), 10 to 90%, are defined in Note 2 of Notes to Electrical Measurement Tables herein.

1.11 <u>INPUT PROTECTION NETWORK</u> Inputs DG, IG, OG, Φ R, I Φ n, R Φ n and S Φ n are protected as shown:

1.12 MATERIALS AND FINISHES

(a) CCD Package

The CCD package shall be of multilayered co-fired aluminium oxide and aluminium nitride construction. The external top and side surfaces shall be gold plated over nickel and tungsten.

- (b) Input Window/Lid Seal None
- (c) Terminal Material and Finish The terminal material shall be Type D in accordance with ESCC Basic Specification No. 23500. The terminal finish shall be gold, thickness 1.524µm min over nickel, thickness 1.27µm min, 8.89µm max.

2 <u>REQUIREMENTS</u>

2.1 <u>GENERAL</u>

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 Deviations from the Generic Specification

2.1.1.1 Deviations from Production Control

(a) Rebonding of wire bonds is permitted as defined: No more than three rebonds are permitted anywhere on any one device. No bondlink may be reworked more than once; i.e. there may be no more than two bond feet, or attempted bond feet, on any bond pad, whether chip or package. No more than two adjacent bond pads, on chip or package, may be subjected to rebonding.

- 2.1.1.2 Deviations from Special In-Process Controls Chart F2
 - (a) Die Shear/Substrate Attach Strength testing is not performed.
- 2.1.1.3 Deviations from Qualification and Periodic Tests Chart F4
 - (a) Permanence of Marking shall not be performed.
 - (b) Operating Life. For Periodic Tests, the duration shall be 1000 hours, with electrical measurements performed in accordance with Intermediate and End-Point Electrical Measurements herein at 0 and 1000 ±48 hours.
- 2.1.1.4 Deviations from Data Documentation Report
 - (a) Special In-Process Controls data shall be held by the manufacturer and not delivered.
- 2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification.
- (b) The ESCC qualified components symbol (for ESCC qualified components only).
- (c) The ESCC Component Number.
- (d) Traceability information.

2.3 <u>ELECTRICAL MEASUREMENTS AT REFERENCE, HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at reference, high and low temperatures. Consolidated Notes are given after the tables.

2.3.1 <u>Reference Temperature Electrical Measurements</u>

Unless otherwise specified the measurements shall be performed at $T_{ref} \pm 3$ °C.

Characteristics	Symbols ESCC 25000 Test Method	Test Conditions	Limits		Units	
		Para.		Min	Max	
Leakage Current on Input Gates	IL	5.1	$V_{IN}(Input Gates) = 20V$ $V_{IN}(Remaining Inputs)$ $= 0V$ $V_{OUT} = 0V$ $V_{SS} = 0V$ $T_{amb} = +21 \pm 3 \text{ °C}$	-	10	nA
Power Supply Current 1	I _{OD}	5.3	Notes 1, 2	-	10	mA
Power Supply Current 2	I _{RD}	5.3	Notes 1, 2	-	100	nA
DC Output Voltage Level	V _{REF}	5.4	$V_{IN}(\Phi R) = 12V,$ V_{IN} (Remaining Inputs) = 0V	Not	e 3	V
Reset Pulse Feedthrough	V _{reset}	5.5	Notes 1, 2	-	100	mV

ISSUE 2

Characteristics	Symbols	ESCC 25000	Test Conditions	Limits		Units
		Test Method Para.		Min	Max	-
Offset Voltage	V _{OFFSET}	6.5	Notes, 1, 2	-	25	mV
Thermistor Resistance (Variant 01 only)	R _T	-	-	Not	te 4	kΩ
Charge to Voltage Conversion Factor	CVF	6.18	Notes 1, 2	0.8	1.2	µV/e
Full Well Capacity (Image Section)	V _{SAT-IM}	6.7(a): Global Method	Uniform illumination Notes 1, 2	300	-	ke
Full Well Capacity (Readout Register)	V _{SAT-RE}	6.8	Number of binned lines = 8, Uniform illumination Notes 1, 2	1200	-	ke
Linearity Error (to 240ke/p)	LE	6.6	Uniform illumination Notes 1, 2	-	1	%
Average Dark Signal	DS _{AV}	6.20	Notes 1, 2	-	125	e/pix el/s
Dark Signal Non- uniformity	DSNU	6.21	Notes 1, 2	-	50	e/pix el/s
Quantum Efficiency	QE	6.19	Uniform illumination Notes 1, 2, 5 Wavelength = 350nm 400nm 500nm 650nm 900nm	50 80 80 75 30	- - - -	%
Photo Response Non-uniformity	PRNU	6.14	Uniform illumination Notes 1, 2 Wavelength = 400nm (~10nm bandwidth) 550nm (~80nm bandwidth)	-	5 3	%
Total Charge Transfer Inefficiency - Vertical	VCTI	6.12	No illumination Notes 1, 2, 6	-	1.5	%
Store Shield Position	-	-	Uniform illumination Notes 1, 2, 7	-	-	-

ISSUE 2

Characteristics	Symbols	ESCC 25000 Test Method	Test Conditions	Limits		Units
		Para.		Min	Max	
Photo Response Defects Pixels Columns	_	-	Notes 1, 2, 8 (Identified from the data frame of the measurement of PRNU)	- -	20 0	-
Defects in Darkness Pixels Columns	-	-	Notes 1, 2, 9	-	60 0	-
Output Impedance	Z _{OUT}	-	Notes 1, 2, 10	-	-	-

2.3.2 High and Low Temperatures Electrical Measurements

The measurements shall be performed at temperatures defined below.

Characteristics	Symbols	ESCC 25000	Test Conditions	Limits		Units
		Test Method Para.	Note 11	Min	Max	
Charge to Voltage Conversion Factor	CVF	6.18	Notes 1, 2 T _{amb} = +50 (+0 -5) °C T _{amb} = -27 (+5 -0) °C	0.7 0.9	1.1 1.3	µV/e
Power Supply Current 1	I _{OD}	5.3	Notes 1, 2 T _{amb} = +50 (+0 -5) °C T _{amb} = -27 (+5 -0) °C	-	10 10	mA
Thermistor Resistance (Variant 01 only)	R _T	-	T_{amb} = +50 (+0 -5) °C T_{amb} = -27 (+5 -0) °C	Not	te 4	kΩ

2.3.3 Notes to Electrical Measurement Tables

1. The CCD shall be biased as follows during electro-optical tests:

Parameter	Symbol	Conditions	Unit
Output Amplifier Drain	V _{OD}	32 (+1 -5)	V
Reset Drain Bias	V _{RD}	19 ±2	V
Substrate Bias	V _{SS}	9 (+2 -1)	V
Output Gate Bias	V _{OG}	3 ±2	V
Diode Drain	V _{DD}	25 to V_{OD}	V
Unused Register (as set on test camera)	V _{IG}	10 (+0 -10)	V

ISSUE 2

2. All Clock low levels taken as 0 \pm 0.5V, except Readout Clock low = 1 \pm 0.5V. Readout frequency ~1 MHz, External Load Resistance on test camera ~4k Ω .

Clock Description	Parameter	Conditions	Unit
Image Clocks IФn	High Level	15 (+0 -3)	V
	Pulse Width	≥ 2	μs
	Initial Pulse Width after Static Clocks	10 (+90 -5)	
	Rise/Fall Times	0.2 (+0.3 -0.1)	-
	Overlap	≥ 90	%
Store Clocks SΦn	High Level	15 (+0 -3)	V
	Pulse Width	≥ 2	μs
	Initial Pulse Width after Static Clocks	10 (+90 -5)	_
	Rise/Fall Times	0.2 (+0.3 -0.1)	-
	Overlap	≥ 90	%
Readout Clocks	High Level	13 (+2 -3)	V
RΦn	Rise/Fall Times	45 (+5 -35)	ns
	Overlap	100	%
Reset Pulse RD	High Level	12 (+3 -2)	V
	Pulse Width	≥ 100	ns
	Rise/Fall Times	35 (+15 -25)	
Dump Gate DG	High Level	14 (+1 -4)	V
	Rise/Fall Times	≥ 50	ns

- 3. DC level is typically 4 to 6 Volts below V_{OD}.
- 4. Thermistor resistance is measured for information only.
- 5. The pixel area is defined as rows 250 to 299 inclusive with a width of 740 pixels (the minimum guaranteed pixel area). The average signal shall be approximately 50% of the measured full well capacity.
- 6. The average signal shall be approximately 80% of the measured full well capacity. The clock sequence is modified to give frame transfer operations with the following features:
 - (i) a frame transfer at normal rate but including an additional 10 line transfer cycles (overscan times). The dump gate is held high during the frame transfer operation but is taken low before the line readout commences.
 - (ii) The normal line by line readout of the store section signal (576 rows) with digitisation and frame stored as normal.

7. Refer to the Functional Diagram herein. The Store Shield Position is calculated using eight points at specific places on the image area, as shown below. Each point is the location of a pixel with at least 50% of the unshielded signal level and having two immediately adjacent pixels of this value or greater.

Lines 1, 2, 3 and 4 are at 1/4 and 3/4 across the image area in each direction. Points 1, 2, 3,..., 8, with coordinates (x1, y1), (x2, y2), etc., are the locations of the 50% threshold pixels (see above). The coordinates of these points are used to calculate, in pixels, the average Left, Right, Outer and Store Edge positions and Shield Rotation as follows:

- Average Store Edge Position = (y1 + y2) / 2
- Average Outer Edge Position = 575 (y3 + y4) / 2
- Average Left Edge Position = (x5 + x6) / 2
- Average Right Edge Position = 779 (x7 + x8) / 2
- Average Rotation = {(x5 x6 + x7 x8) + (y2 y1 + y4 y3) x 514 / 740} / 2
- 8. Photo response defect pixels are those whose signal is more than 20% below the mean signal level of all of the pixels. Column defects are defined as those columns with ≥50 defective pixels.
- 9. Defects in darkness pixels are defined as pixels with signals above a pre-defined threshold when the device is un-illuminated. Column defects are defined as those columns with ≥50 defective pixels. The threshold for defect counting is set to be 50 times the maximum specified mean dark signal at the reference temperature.
- 10. The procedure for calculating Z_{OUT} is as follows:
 - Measure the output signal for a given level of illumination (nominally 50% of saturation) averaged over a 100 x 100 pixel block.
 - Shunt the amplifier output with a (known) AC coupled resistive load and repeat the output signal measurement.
 - The output impedance can then be calculated from the ratio of the two output signals:

$$\frac{1}{Z_{OUT}} = \frac{1}{R_{TEST}(refsig/shntsig-1)} - \frac{1}{R_{LOAD}}$$

Where: R_{TEST} = test resistive load (nominally 470 Ω); R_{LOAD} = CCD output load resistor (nominally 4k Ω); refsig = output signal, no test load; shntsig = output signal with test load.

PAGE 20

ISSUE 2

11. Read and record measurements shall be performed on a sample of 5 components with 0 failures allowed. Alternatively a 100% inspection may be performed.

2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at $T_{ref} \pm 3$ °C.

The test methods and test conditions shall be as per the corresponding test defined in Reference Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Limits			Units
		Drift	Abso	olute	
		Value Δ	Min	Max	
Leakage Current on Input Gates	ΙL	±1 or (1) ±100%	-	10	nA
Power Supply Current 1	I _{OD}	±25%	-	10	mA
Average Dark Signal	DS _{AV}	±100%	-	125	e/pixel/s

NOTES:

1. Whichever is the greater, referred to the initial value.

2.5 INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS

Unless otherwise specified, the measurements shall be performed at $T_{ref} \pm 3$ °C.

The test methods and test conditions shall be as per the corresponding test defined in Reference Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic where specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Limits			Units
		Drift Value	Abso	olute	
		Δ (Note 2)	Min	Max	
Leakage Current on Input Gates	ΙL	±1 or (1) ± 100%	-	10	nA
Power Supply Current 1	I _{OD}	±25%	-	10	mA
Power Supply Current 2	I _{RD}	-	-	100	nA

ISSUE 2

Characteristics	Symbols		Limits		Units
		Drift	Abso	olute	
		Value ∆ (Note 2)	Min	Max	
DC Output Voltage Level	V _{REF}	-	Not	e 3	V
Reset Pulse Feedthrough	V _{RESET}	-	-	100	mV
Offset Voltage	V _{OFFSET}	-	-	25	mV
Charge to Voltage Conversion Factor	CVF	-	0.8	1.2	µV/e
Full Well Capacity (Image Section)	V_{SAT-IM}	-	300	-	ke
Full Well Capacity (Readout Register)	V_{SAT-RE}	-	1200	-	ke
Linearity Error (to 240ke/p)	LE	-	-	1	%
Average Dark Signal	DS _{AV}	±100%	-	125	e/pixel/s
Dark Signal Non-uniformity	DSNU	-	-	50	e/pixel/s
Quantum Efficiency (Note 4)	QE				%
Wavelength = 350nm		-	50	-	-
Wavelength = 400nm		-	80	-	
Wavelength = 500nm		-	80	-	
Wavelength = 650nm		-	75	-	-
Wavelength = 900nm		-	30	-	-
Photo Response Non-uniformity (Note 4)	PRNU				%
Wavelength = 400nm (~10nm bandwidth)		-	-	5	
Wavelength = 550nm (~80nm bandwidth)		-	-	З	
Total Charge Transfer Inefficiency - Vertical	VCTI	-	-	1.5	%
Store Shield Position	-	-	-	-	-
Photo Response Defects (Note 4) Pixels Columns	-		-	20 0	-

ISSUE 2

Characteristics	Symbols	Limits			Units
		Drift	Abso	olute	
		Value Δ (Note 2)	Min	Max	
Defects in Darkness Pixels Columns	-	-	-	60 0	-
Output Impedance	Z _{OUT}	-	-	-	-

- **NOTES:** 1. Whichever is greater, referred to the initial value.
- The drift values (Δ) are applicable to the Operating Life test only. 2.
- 3.
- DC level is typically 4 to 6 Volts below V_{OD} . These parameters are not measured as part of the Mechanical and Environmental subgroups 4. of Chart F4 of ESCC Specification No. 9020.

2.6 **BURN-IN CONDITIONS**

Characteristics	Symbols	Test Conditions	Unit
Case Temperature	T _{case}	125 (+0, -5)	°C
Output Transistor Drain Bias	V _{OD}	25.5	V
Reset Transistor Drain Bias	V _{RD}	10.5	V
Dump Drain Bias	V _{DD}		
Substrate Bias	V _{SS}	0	V
Storage Section Clock	V _{SΦ3}	V _{x0} (Note 3)	V
Dump Gate Bias	V _{DG}		
Isolation Gate Bias	V _{IG}		
Image Section Clock	V _{IΦ3}		
Readout Register Clock	V _{RΦ3}	V _{X1} (Note 3)	V
Readout Register Clock	V _{RΦ2}	V _{x2} (Note 3)	V
Storage Section Clock	V _{SΦ2}		
Image Section Clock	V _{IΦ2}		
Output Reset Pulse	$V_{\Phi R}$		

ISSUE 2

Characteristics	Symbols	Test Conditions	Unit
Storage Section Clock	V _{SΦ1}	V _{X3} (Note 3)	V
Output Gate Bias	V _{OG}		
Image Section Clock	V _{IΦ1}		
Readout Register Clock	V _{RΦ1}		
Constant Current Load	I _{OS}	7.5 ±1	mA
Switched Voltage Cycle Period	t _{sv}	6 ±0.1	hours
Thermistors (Variant 01 only)	V _{th}	Open	V

NOTES:

- 1. All voltages are ±0.2V.
- The CCD is illuminated so that the pixel well capacities are over saturated (to ensure that a sufficient number of holes are generated to pin the silicon surface to V_{SS}).
- 3. $V_{X0} = V_{X1} = V_{X2} = V_{X3} = -15V$ with a 0V period of duration t_{sv} applied sequentially during each 24 hour period.

2.7 OPERATING LIFE CONDITIONS

The conditions shall be as specified for Burn-in.

2.8 TOTAL DOSE RADIATION TESTING

2.8.1 <u>Bias Conditions and Total Dose Level for Total Dose Radiation Testing</u> Continuous bias shall be applied during irradiation as specified below.

The total dose level applied shall be as specified in the component type variant information herein or in the Purchase Order.

Characteristics	Symbols	Test Conditions	Unit
Case Temperature	T _{case}	+20 ±10	°C
Output Transistor Drain Bias	V _{OD}	32 ±1	V
Dump Drain Bias	V _{DD}		
Reset Transistor Drain Bias	V _{RD}	19 ±0.5	V
Substrate Bias	V_{SS}	9 ±1	V
Output Reset Pulse	$V_{\Phi R}$	10 ±0.2	V

ISSUE 2

Characteristics	Symbols	Test Conditions	Unit
Storage Section Clocks	V _{SΦn}	0 ±0.2	V
Image Section Clocks	V _{IΦn}		
Readout Register Clocks	V _{RΦn}		
Dump Gate Bias	V _{DG}		
Isolation Gate Bias	V _{IG}		
Output Gate Bias	V _{OG}		
Thermistors (Variant 01 only)	V _{th}		
Output Transistor Source Bias	V _{os}	Note 1	V

NOTES:

2.8.2 Electrical Measurements for Total Dose Radiation Testing

Prior to irradiation the devices shall have successfully met Reference Temperature Electrical Measurements specified herein.

Unless otherwise stated the measurements shall be performed at $T_{ref} \pm 3$ °C.

The test methods and test conditions shall be as per the corresponding test defined in Reference Temperature Electrical Measurements.

The parameters to be measured during and on completion of irradiation are shown below.

Characteristics	Symbols	Lin	Limits	
		Min	Max	
Leakage Current on Input Gates	ΙL	-	10	nA
Power Supply Current 1	I _{OD}	-	10	mA
Power Supply Current 2	I _{RD}	-	100	nA
DC Output Voltage Level	V _{REF}	Not	te 2	V
Offset Voltage (Note 3)	V _{OFFSET}	-	25	mV
Charge to Voltage Conversion Factor (Note 3)	CVF	0.8	1.2	μV/e
Full Well Capacity (Image Section)	V _{SAT-IM}	300	-	ke
Full Well Capacity (Readout Register)	V _{SAT-RE}	1200	-	ke

^{1.} OS is connected to 0V via a $3.6k\Omega$ resistor to give approximately 7mA in the CCD output transistor.

ISSUE 2

PAGE 25

Characteristics	Symbols	Lin	nits	Units
		Min	Max	
Linearity Error (to 240ke/p)	LE	-	2	%
Average Dark Signal (Nominal V_{SS}) (Note 4)	DS _{AV}	-	150	e/pixel/s
Dark Signal Non-uniformity (Note 3)	DSNU	-	75	e/pixel/s
Total Charge Transfer Inefficiency - Vertical	VCTI	-	2	%
Photo Response Defects Pixels Columns	-	-	20 0	-
Defects in Darkness Pixels Columns (Note 5)	-	-	60 0	-

NOTES:

- 1. The limits listed are valid for measurements during and on completion of irradiation and after annealing.
- 2. DC level is typically 4 to 6 Volts below V_{OD} .
- 3. V_{OD} , V_{RD} and V_{SS} bias voltages may require correction for irradiation induced threshold shift to perform these measurements.
- 4. Measurements may be performed at various V_{SS} settings to determine the threshold voltage shift after irradiation.
- 5. Defect Threshold to be scaled with the increased limit for Dark Signal.

ESCC Detail Specification

No. 9610/004

PAGE 26

<u>APPENDIX A</u>

AGREED DEVIATIONS FOR E2V TECHNOLOGIES

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Deviations from Production Control	Wafer Lot Acceptance Total Dose Radiation Testing. The sample size defined in ESCC Basic Specification No. 22900 shall be replaced by a minimum sample of 4 test devices, selected at random from a minimum of two different diffusion lots making a minimum of 8 samples in all.