

Page i

CAPACITORS, FIXED, TANTALUM, SOLID ELECTROLYTE, BASED ON TYPE CSR13 ESCC Detail Specification No. 3002/002

ISSUE 1 October 2002

ESCC Detail Specification

PAGE	ii
ISSUE	1

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or allleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 24

CAPACITORS, FIXED, TANTALUM, SOLID ELECTROLYTE, BASED ON TYPE CSR13

ESA/SCC Detail Specification No. 3002/002

space components coordination group

		Appro	oved by
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy
Issue 3	August 1995	Tomomen's	Horm

PAGE 2

ISSUE 3

DOCUMENTATION CHANGE NOTICE

			ILITATION OFFICE NOTICE	
Rev.	Rev.		CHANGE	Approved
Letter	Date	Reference	ltem	DCR No.
Lotto	Dato			
		This Issue supersedes	s Issue 2 and incorporates all modifications defined in	
			and 'D' to Issue 2 and the changes agreed in the	
		following DCR's:-		
		Cover page		None
1		DCN		None 21025
		1	Item (b) deleted	23751
		Para. 3	Second sentence added	23751
			Column numbers added Symbols corrected, Notes added	23751
		Table 1(b)	Label added to X-axis	23751
		Figure 1 : Figure 2 :	Imperial dimensions deleted	23751
1			Paragraph wording amended	23751
		Para. 4.2.4	Title wording amended	23751
		Para. 4.3.1	Paragraph wording amended	23751
	1	Para. 4.3.3	Second sentence deleted	23751
			Title and text amended	21025
	Ì	Para. 4.5.1	Paragraph wording amended	23751
			New paragraph, moved from Para. 4.5.3.4. Subsequent	23751
	1		paragraphs renumbered	
	ŀ		Type Variant added	21021
	Ì	Para. 4.5.3	Wording standardised and values added	23751
1			Wording standardised	23751
Ĭ		•	Wording standardised	23751
			Symbol added	23751
			Moved to become Para. 4.5.2	23751 23751
			Wording added to end of paragraph	23751
ĺ		,	Text amended	23751
		Para. 4.7.1	Text amended and paragraph standardised Wording standardised	23751
İ			: Figure 5 reference added	23751
			: Columns standardised, symbols standardised	23751
1		Table 3	: Columns standardised, notes added with reference to	
		Table o	Columns in Table 1(a)	
1	1	Figure 4	Figure 4 reference added	23751
1			: Notes added, symbols corrected and columns	23751
	1		standardised	
			: Renumbered as 5(a) and Note added	23751
		Table 5(b)	: Table moved from Table 7 and standardised	23751
	L	Figure 5	: Figure 5 reference added	23751
1			: Title and paragraph wording amended	23751
			: Title amended and last sentence added	23751
		1. 0.0.	: Title amended	23751
			: Amend Table reference	23751
			: New paragraph	23751 23751
			: Format amended and corrected	23751
			: Deleted : DCR Number column deleted	23187
1			: DCR Number column deleted : Format standardised	23751
			. I omat standardiood	

PAGE 3

ISSUE 3

TABLE OF CONTENTS

1.	GENERAL	<u>Page</u> 5
4 4	Scope	5
1.1 1.2	Range of Components	5
1.2	Maximum Ratings	5
1.4	Parameter Derating Information	5
1.5	Physical Dimensions	5
1.6	Functional Diagram	5
2.	APPLICABLE DOCUMENTS	5
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
4.	REQUIREMENTS	15
4.1	General	15
4.2	Deviations from Generic Specification	15
4.2.1	Deviations from Special In-process Controls	15
4.2.2	Deviations from Final Production Tests	15
4.2.3	Deviations from Burn-in and Electrical Measurements	15
4.2.4	Deviations from Qualification Tests	15
4.2.5	Deviations from Lot Acceptance Tests	15
4.3	Mechanical Requirements	15
4.3.1	Dimension Check	15
4.3.2	Weight	15
4.3.3	Terminal Strength	15
4.4	Materials and Finishes	16
4.4.1	Case	16
4.4.2	Lead Material and Finish	16
4.4.3	Sleeving	16
4.5	Marking	16
4.5.1	General	16
4.5.2	Polarity	16
4.5.3	The SCC Component Number	16
4.5.4	Electrical Characteristics and Ratings	17
4.5.5	Traceability Information	18
4.6	Electrical Measurements	18
4.6.1	Electrical Measurements at Room Temperature	18
4.6.2	Electrical Measurements at High and Low Temperatures	18 18
4.6.3	Circuits for Electrical Measurements	18
4.7	Burn-in Tests	
4.7.1	Parameter Drift Values	18
4.7.2	Conditions for Burn-in	18
4.7.3	Electrical Circuit for Burn-in	18
4.8	Environmental and Endurance Tests	21 21
4.8.1	Measurements and Inspections on Completion of Environmental Tests	21
4.8.2	Measurements and Inspections at Intermediate Points during Endurance Tests	21
4.8.3	Measurements and Inspections on Completion of Endurance Tests	21
4.8.4 4.8.5	Conditions for Operating Life Tests Electrical Circuit for Operating Life Tests	21
4.0.0	LIBOTICAL CITCUIT IOL ODGIANINA ENG. 10010	

PAGE 4 ISSUE 3

		<u>Page</u>
TABLE	<u>es</u>	
1(a)	Range of Components	6
1(b)	Maximum Ratings	13
2	Electrical Measurements at Room Temperature	19
3	Electrical Measurements at High and Low Temperatures	19
4	Parameter Drift Values	20
5(a)	Conditions for Burn-in	20
5(b)	Conditions for Operating Life Tests	20
6	Measurements and Inspections on Completion of Environmental Tests and at Intermediate	22
	Points and on Completion of Endurance Testing	
FIGUE	RES CONTRACTOR CONTRAC	
1	Parameter Derating Information	13
2	Physical Dimensions	14
3	Functional Diagram	14
4	Circuits for Electrical Measurements	20
5	Electrical Circuit for Burn-in and Operating Life Tests	20
APPE	NDICES (Applicable to specific Manufacturers only)	
<u>'Δ'</u>	Agreed Deviations for Sprague (F)	24

PAGE

ISSUE 3

5

1. GENERAL

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for Capacitors, Fixed, Tantalum, Solid Electrolyte, based on Type CSR13. It shall be read in conjunction with ESA/SCC Generic Specification No. 3002, the requirements of which are supplemented herein.

1.2 RANGE OF COMPONENTS

The range of capacitors covered by this specification is scheduled in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the capacitors specified herein, are scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The parameter derating information, applicable to the capacitors specified herein, is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the capacitors specified herein, are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram for the capacitors specified herein is shown in Figure 3.

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:-

(a) ESA/SCC Generic Specification No. 3002 for Capacitors, Fixed, Tantalum, Solid Electrolyte.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following symbols are used:-

V_T = Test Voltage.

9

PAGE

က

ISSUE

TABLE 1(a) - RANGE OF COMPONENTS

(13)	Weight	(g)	0.7	0.7	1.7	1.7	5.4	5.4	9.0	9.0	0.7	0.7	1.7	1.7	1.7	5.4	5.4	5.4	9.0	9.0	0.7	0.7	1.7	
)			-	_	נצי	(7	J,	U))	J	T			4)	4)	4	3,	J,		\dashv	T	
(12)			A	٨	В	В	O	ပ	۵	Δ	٧	٧	В	Δ	മ	ပ	ပ	ပ	Δ	Ω	٧	٧	В	
Surge Voltage	(11) At ± 125°C	ζ	9.0	5.0	5.0	5.0	5.0	2.0	5.0	5.0	9.0	9.0	0.6	9.0	9.0	9.0	9.0	9.0	9.0	9.0	12	12	12	
Surge	(10) (10)) (2) (3) (4)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	13	13	13	13	13	13	13	13	13	13	20	20	20	
(6)	Dissipation Factor (± 6€ € € ± 125 € €)	(%) (%)	4.0	6.0	0.9	6.0	8.0	8.0	8.0	8.0	4.0	4.0	6.0	0.9	6.0	6.0	8.0	8.0	8.0	8.0	4.0	4.0	6.0	
(8)	Factor	(%) (%)	4.0	6.0	6.0	6.0	8.0	8.0	8.0	8.0	4.0	4.0	6.0	6.0	6.0	6.0	8.0	8.0	8.0	8.0	4.0	4.0	6.0	
ent (I _L)	(7)	۲	7.5	7.5	30	30	113	138	163	188	7.5	8.8	20	83	83	100	125	150	226	250	7.5	10	44	
D.C. Leakage Currer	(9)		6.0	0.9	24	24	06	110	130	150	0.9	7.0	40	20	50	80	100	120	180	200	6.0	8.0	32	
D.C. Le	(5)	(JuA)	0.5	0.5	3.0	3.0	9.0	1	13	15	9.0	0.7	4.0	5.0	5.0	8.0	10	12	18	20	9.0	0.8	3.5	
(4)	lolerance	(%∓)	10	10, 20	10, 20	10	10, 20	10	10	10, 20	10	10, 20	10	10, 20	10	10	10, 20	10	10	10, 20	10	10, 20	10	
(6)	Capacitance Value	(j.)	5.6	6.8	47	26	150	180	270	330	3.9	4.7	27	33	39	82	100	120	180	220	2.7	3.3	18	
		38	0.9	0.9	6.0	6.0	6.0	0.9	0.9	0.9	10	10	10	10	10	10	10	10	10	10	15	15	15	
(1)	lype No.		565KA	685XA	476XA	566KA	157XA	187KA	277KA	337XA	395KD	475XD	276KD	336XD	396KD	826KD	107XD	127KD	187KD	227XD	275KE	335XE	186KE	•

PAGE 7	ISSUE 3		
	ESA/SCC Detail Specification	No. 3002/002	

(3) (4) D.C. Leakage Current (I ₁) (8) (9)	t (l,) (8)	t (l-) (8)	t (l-) (8)		(6)		Surge Voltage	/oltage	(12)	(13)
Tolerance Dissipation	Dissipation	Dissipation	Dissipation		Dis	Dissipation	, [Case	Max.
(5) (6) (7) Factor	(6) (7) Factor	(7) Factor	Factor		ĺ	Factor	(10)	(11)	Size	Weight
+25°C +85°C +125°C (-55°C to +25°C) (+85°C +125°C (-55°C to +25°C) (+125°C (-55°C to +25°C) (125°C (-55°C to +25°C) (+25°C) (<u>+</u>	+85°C to +125°C)	At +85°C	At + 125°C		,
(μF) $(\pm \%)$ (μA) (μA) (μA) (μA)	(Aul) (Aul)	(h/A)		(%)		(%)	(3)	(S)		(6)
56 10 8.0 80 100 6.0	80 100	100		0.9		6.0	20	12	ပ	5.4
68 10, 20 10 100 125 6.0	100 125	125		6.0		6.0	20	12	ပ	5.4
120 10 18 180 226 8.0	180 226	226		8.0		8.0	20	12	Ω	9.0
150 10, 20 20 250 8.0	200 250	250		8.0		8.0	20	12	Δ	9.0
1.2 10 0.6 6.0 7.5 4.0	6.0 7.5	7.5		4.0		4.0	26	16	∢	0.7
	6.0 7.5	7.5		4.0		4.0	26	16	∀	0.7
	6.0 7.5	7.5		4.0		4.0	56	16	∢	0.7
_	8.0 10	10		4.0		4.0	26	16	A	0.7
8.2 10 2.0 25 6.0	20 25	25		6.0		0.9	26	16	ш	1.7
10 10, 20 3.0 30 38 6.0	30 38	38		6.0		0.9	26	16	മ	1.7
3.5	35 44	44		0.9		0.9	26	16	ш	1.7
15 10, 20 4.0 40 50 6.0	40 50	20		6.0		6.0	26	16	В	1.7
27 10 5.0 50 63 6.0	50 63	63		6.0		6.0	26	16	0	5.4
33 10, 20 7.0 70 88 6.0	70 88	88		0.9		0.9	26	16	ပ	5.4
39 10 8.0 80 100 6.0	80 100	100		6.0		6.0	26	16	ပ	5.4
47 10, 20 9.0 90 113 6.0	90 113	113		6.0		6.0	26	16	C	5.4
56 10 11 110 138 8.0	110 138	138		8.0		8.0	26	16	۵	9.0
68 10, 20 14 140 175 8.0	140 175	175		8.0		8.0	26	16	۵	9.0
10 16	160 200	200	· · · · · ·	8.0		8.0	26	16	۵	9.0
10, 20 20 250	200 250	250		8.0		8.0	26	16	۵	9.0
5.6 10 2.5 25 32 4.0	25 32	32		4.0		4.0	46	28	В	1.7
6.8 10, 20 3.0 30 38 6.0	30 38	38		6.0		6.0	46	28	В	1.7
22 10, 20 8.0 80 100 6.0	80 100	100		6.0		6.0	46	28	ပ	5.4

က

ISSUE

PAGE

<u>@</u>		Ħ									٠													•		
(13)		Weight	(3	(B)	9.0	9.0	9.0	9.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
(12)		Size			۵	Δ	Δ		∢	∢	∢	∢	∢	⋖	∢	∢	4	∢	∢	⋖	∢	∢	∢	∢	∢	∢
Surge Voltage		(11)	At +125°C	(v)	28	28	58	28	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Surge \		(10)	At +85°C	(v)	46	46	46	46	99	92	65	65	92	65	92	99	92	65	92	92	92	92	92	65	92	n L
(6)	Dissipation	₽.	(+85°C to +125°C)	(%)	6.0	0.9	6.0	6.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	<u> </u>
(8)	Dissipation	Factor	(-55°C to +25°C)	(%)	6.0	6.0	6.0	6.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	c
ent (I∟)		(2)		(h/A)	113	138	175	200	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	Ċ
D.C. Leakage Current (IL)		(9)	+ 82°C	(hd)	96	110	140	160	5.0	5.0	5.0	2.0	5.0	5.0	2.0	2.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	5.0	5.0	Ĺ
D.C. Le		(2)	+25°C	(hd)	9.0	7	14	16	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	L
(4)	Tolerance			(%∓)	10	10, 20	10	10, 20	10, 20	10	10, 20	10	10, 20	10	10, 20	10	10, 20	. 0	10, 20	10	10, 20	10	10, 20	10	10, 20	
(3)	Capacitar		<u>©</u>		27	33	39	47	0.0047	0.0056	0.0068	0.0082	0.01	0.012	0.015	0.018	0.022	0.027	0.033	0.039	0.047	0.056	0.068	0.082	0.1	0.70
(2)	Rated	Voltage	(U _R)	S	35	32	35	32	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	Ç
Ξ	Tvne	No.			276K.I	336XJ	396KJ	476XJ	472XL	562KL	682XL	822KL	103XL	123KL	153XL	183KL	223XL	273KL	333XL	392KL	473XL	563KL	683XL	823KL	104XL	777

PAGE	ISSNE		
	ESA/SCC Detail Specification	No. 3002/002	

თ

က

(3)	(4)	D.C. Les	D.C. Leakage Current	ent (II)	(8)	(6)	Surge \	Surge Voltage	(12)	(13)
Tolerance) o				Dissipation	Dissipation			Case	Max.
5	}	(2)	(9)	<u>(</u> 2)		ğ	(10)		Size	Weight
		+25°C	+ 85°C	+125°C	(-55°C to +25°C)	(+85°C to +125°C)	At +85°C	¥		
(%∓)		(h/A)	(hrd)	(h/A)	(%)	(%)	(<)	(2)		(6)
10		0.5	5.0	6.3	2.0	4.0	92	40	∢	0.7
10, 20		0.5	5.0	6.3	2.0	4.0	65	40	∢	0.7
10		0.5	5.0	6.3	2.0	4.0	65	40	٧	0.7
10, 20		0.5	5.0	6.3	2.0	4.0	65	40	∢	0.7
10		0.5	5.0	6.3	2.0	4.0	65	40	∢	0.7
10, 20		0.5	2.0	6.3	2.0	4.0	65	40	Α	0.7
9		0.5	2.0	6.3	2.0	4.0	65	40	∢	0.7
10, 20		0.5	5.0	6.3	2.0	4.0	65	40	∢	0.7
10		0.5	2.0	6.3	2.0	4.0	65	40	∢	0.7
10, 20		0.8	8.0	10	2.0	4.0	65	40	∢	0.7
9	Γ	0.9	9.0	11	4.0	4.0	65	40	Ω	1.7
10, 20		1.2	12	15	4.0	4.0	92	40	മ	1.7
. 01		1.4	14	18	4.0	4.0	92	40	മ	1.7
10, 20		1.7	17	22	4.0	4.0	65	40	മ	1.7
10		2.0	20	25	4.0	4.0	65	40	മ	1.7
10, 20		2.5	25	32	4.0	4.0	65	40	മ	1.7
10		3.0	30	38	4.0	4.0	65	40	മ	1.7
10, 20	_	3.5	35	44	4.0	4.0	65	40	m	1.7
9		4.5	45	56	4.0	4.0	99	40	O	5.4
10, 2	0	4.5	45	56	4.0	4.0	65	40	ပ	5.4
10	_	5.0	20	63	6.0	6.0	65	40	ပ	5.4
10,	50	5.0	20	83	6.0	6.0	65	40	ပ	5.4
٩.		9.0	09	75	6.0	6.0	65	40	ပ	5.4

PAGE 10	ISSUE 3	
	ESA/SCC Detail Specification	NO. SUUZ/UUZ

Case Max.																									
Surge voltage		At +125°C	ا ب	i	. I I	. i i i	₩ 1 1 1	. i i i		. i i i		I	→ i i i	 i i i i u	i i i							→ i i i	→ i i i i	→ i i i	
(8) (9) Dissipation	30+001	(+85°C to +125°C)	(+85°C to +125°C) (%)	(+85°C to +125°C) (%) 6.0	(+85°C to +125°C) (%) 6.0 6.0	(+85°C to +125°C) (%) 6.0 6.0 6.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	(+85°C to +125°C) (%) (%) 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4
	Factor		(%) (%)	(~) (%) (8.0 (8.0	(-55 C (0) + 25 C () (%) (%) (%) (%) (%) (%) (%) (%) (%)	6.0 (%) (%) 6.0 6.0 6.0	6.0 (%) (%) 6.0 6.0 6.0 6.0	6.0 (%) 6.0 6.0 6.0 6.0 6.0 2.0	6.0 (%) (%) (%) 6.0 6.0 6.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 6.0 2.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 6.0 2.0 2.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 2.0 2.0 2.0 2.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 2.0 2.0 2.0 2.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 6.0 2.0 2.0 2.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(%) (%) (%) 6.0 6.0 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(%) (%) 6.0 6.0 6.0 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
	(/) +125°C	(JuA)		100	100	100 113 138	100 113 138 6.3	100 113 138 6.3	100 113 138 6.3 6.3	100 113 6.3 6.3 6.3 6.3	110 1138 6.3 6.3 6.3 6.3	100 1138 6.3 6.3 6.3 6.3 6.3	113 1138 6.3 6.3 6.3 6.3 6.3	1100 1138 6.3 6.3 6.3 6.3 6.3	0.1 1.138 6.3 6.3 6.3 6.3 6.3 6.3 6.3	1138 138 6.3 6.3 6.3 6.3 6.3 6.3 6.3	1100 1138 6.3 6.3 6.3 6.3 6.3 6.3	01 1138 138 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	0.1 11.38 1.38 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	01 1 138 1 1	01 1 138 138 138 138 138 138 138 138 138	1100 1138 138 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	01 1138 138 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	01 1 138 138 138 138 138 138 138 138 138	01 1 138 1 1
	+ 85°C		S	3	06	90	90 110 5.0	90 91 110 5.0	90 90 110 5.0 5.0	90 90 110 5.0 5.0 5.0	90 110 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0 5.0 5.0	90 110 5.0 5.0 5.0 5.0 5.0 5.0	110 110 5.0 5.0 5.0 5.0 5.0 5.0 5.0	90 110 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	90 110 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	00 011 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	90 110 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	00 011 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	90 110 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
(5)			8.0	9.0		=	0.5	0.5	0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0	0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 2.0
200		(%∓)	10, 20	10		10, 20	10, 20	10, 20 10, 20 10	10, 20 10, 20 10 10, 20	10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20 10, 20	10, 20 10, 20
	Value (C)	(hr)	15	18		22	22 0.1	22 0.1 0.12	0.12 0.12 0.15	0.1 0.12 0.15 0.15	0.12 0.12 0.15 0.18	0.12 0.12 0.15 0.22 0.22	22 0.1 0.12 0.15 0.22 0.27 0.33	0.12 0.12 0.15 0.18 0.22 0.33	0.12 0.12 0.15 0.22 0.27 0.33 0.39	0.12 0.12 0.15 0.18 0.22 0.33 0.33 0.39	0.12 0.12 0.15 0.27 0.33 0.39 0.39 0.56	22 0.1 0.12 0.18 0.22 0.33 0.39 0.47 0.68	0.12 0.12 0.15 0.18 0.22 0.33 0.33 0.47 0.68 0.68	22 0.1 0.12 0.15 0.22 0.33 0.33 0.47 0.68 0.68	0.12 0.15 0.15 0.22 0.33 0.39 0.47 0.68 0.68 0.68 1.0	0.12 0.15 0.15 0.18 0.22 0.33 0.33 0.47 0.68 0.68 1.2 1.2	0.12 0.15 0.15 0.15 0.27 0.39 0.47 0.68 0.68 0.82 1.0	0.12 0.15 0.15 0.18 0.27 0.33 0.39 0.47 0.68 0.68 0.68 1.0 1.2 1.2	0.12 0.15 0.15 0.18 0.22 0.33 0.33 0.47 0.68 0.68 1.2 1.2 1.2 1.2 2.2 3.3
	_ >	3	50	20		50	50 75	50 75 75	50 75 75 75	50 75 75 75 75	50 75 75 75 75	50 75 75 75 75 75	50 75 75 75 75 75 75	50 75 75 75 75 75 75	50 75 75 75 75 75 75 75	50 75 75 75 75 75 75 75 75	50 75 75 75 75 75 75 75 75 75	50 75 75 75 75 75 75 75 75 75	50 75 75 75 75 75 75 75 75 75	50 57 57 57 57 57 57 57 57 57	50 57 57 57 57 57 57 57 57 57 57	50 57 57 57 57 57 57 57 57 57 57	50 57 57 57 57 57 57 57 57 57 57	50 57 57 57 57 57 57 57 57 57 57 57	50 57 57 57 57 57 57 57 57 57 57 57 57 57
	S S		156XL	186KL		컺	걸	꼭 중 중	꼭 중 중	꼭 중 중 중 중	ጓ ኛ 중 ኛ ኞ ኞ ኞ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\\ \frac{7}{6} \fr	\\ \times	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<u> </u>	× × × × × × × × × × × × × × × × × × ×	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	× × × × × × × × × × × × × × × × × × ×	<u> </u>	<u> </u>	<u> </u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	226XL 104XP 124KP 154XP 184KP 224XP 274KP 334XP 334KP 474XP 564KP 684XP 105XP 105XP 125KP 125KP 125KP 125KP 335XP 335XP

PAGE 11

ISSUE

(2)	(3)	(4)	D.C. Le	D.C. Leakage Current	ent (I∟)	(8)	(6)	Surge Voltage	/oltage	(12)	(13)
	Capacitance	Tolerance				Dissipation	Dissipation	(01)	(77)	Case	Meish
	Value		(2)	9	(C)	Factor	Factor	(01)	(11)	ezic	Meignt
_	<u></u> ٷ(+ 25°C	+ 85°C +		(-55°C to +25°C)	(+85°C to +125°C)	At +85°C A) (SZ) + 1K		(0)
	(µ٢)	(4%)	(pry)	(ptA)	(Fig.	(70)	(0/)	(a)	١.٠		(£)
_	4.7	10, 20	6.0	09	75	4.0	4.0	86	64	ပ	5.4
	5.6	10	0.9	90	75	4.0	4.0	86	64	ပ	5.4
	6.8	10, 20	10	100	125	0.9	6.0	86	64	ပ	5.4
	8.2	10	9	100	125	6.0	6.0	86	64	ပ	5.4
	10	10, 20	9	100	125	6.0	6.0	98	64	ပ	5.4
Π	12	10	10	100	125	6.0	6.0	86	64	Ω	0.6
	15	10, 20	14	140	175	0.9	6.0	98	64	D	9.0
Π	0.0047	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	۷	0.7
	0.0056	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
	0.0068	10, 20	0.5	5.0	6.3	5.0	4.0	130	98	∢	0.7
	0.0082	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
	0.01	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
	0.012	10	0.5	5.0	6.3	2.0	4.0	130	98	¥	0.7
	0.015	10, 20	0.5	2.0	6.3	2.0	4.0	130	98	4	0.7
	0.018	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
	0.022	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
	0.027	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
	0.033	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	4	0.7
	0.039	10	0.5	5.0	6.3	2.0	4.0	130	98	¥	0.7
	0.047	10, 20	0.5	5.0	6.3	2.0	4.0	130	86	А	0.7

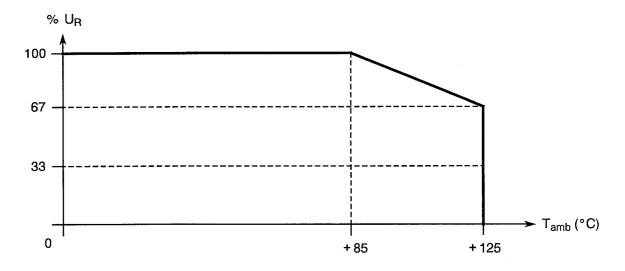
က

ISSUE

PAGE 12

(1)	(2)	(3)	(4)	D.C. Le	D.C. Leakage Current (IL)	ent (I∟)	(8)	(6)	Surge \	Surge Voltage	(12)	(13)
Type		Capacitance	Tolerance				Dissipation	Dissipation	(0,1)	1997	Case O:	Max.
So.	Voltage	Value (C)		(5) + 25°C	(9) + 82°C	(7) + 125°C	Factor (– 55°C to +25°C)	Factor (+85°C to +125°C)	(10) At +85°C	(11) At +125°C	Size	Weignt
	S	(hF)	(%∓)	(h/k)	(h/A)			(%)	(3)	(S)		(g)
563KQ	100	0.056	10	0.5	5.0	6.3	2.0	4.0	130	98	٧	0.7
683XQ	100	0.068	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
823KQ	100	0.082	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
104XQ	100	0.1	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
124KQ	100	0.12	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
154XQ	100	0.15	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
184KQ	100	0.18	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
224XQ	100	0.22	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
274KQ	100	0.27	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
334XQ	100	0.33	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
394KQ	100	0.39	10	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
474XQ	100	0.47	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	∢	0.7
564KQ	100	0.56	10	0.5	5.0	6.3	2.0	4.0	130	86	A	0.7
684XQ	100	0.68	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	В	1.7
824KQ	100	0.82	10	0.5	2.0	6.3	2.0	4.0	130	98	മ	1.7
105XQ	100	1.0	10, 20	0.5	5.0	6.3	2.0	4.0	130	98	മ	1.7
125KQ	100	1.2	10	0.5	5.0	6.3	4.0	4.0	130	98	ш	1.7
155XQ	100	1.5	10, 20	1.0	10	13	4.0	4.0	130	98	ш	1.7
185KQ	100	1.8	10	0.1	10	13	4.0	4.0	130	98	മ	1.7
225XQ	100	2.2	10, 20	1 .	15	19	4.0	4.0	130	98	മ	1.7
275KQ	100	2.7	10	1.5	15	19	4.0	4.0	130	86	В	1.7

PAGE 13 ISSUE 3

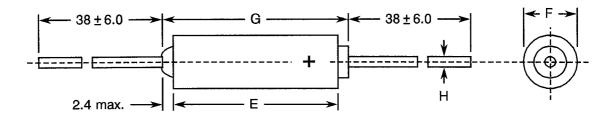

TABLE 1(b) - MAXIMUM RATINGS

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Rated Voltage	U _R	See Table 1(a)	٧	Note 1
2	Operating Temperature Range	T _{op}	-55 to +125	°C	T _{amb}
3	Storage Temperature Range	T _{stg}	-55 to +125	°C	-
4	Soldering Temperature	T _{sol}	+ 240	°C	Note 2

NOTES

- 1. At $T_{amb} \le +85$ °C. For derating at $T_{amb} > +85$ °C, see Figure 1.
- 2. Duration 5 seconds maximum at a distance of not less than 3.0mm from body on negative side and 3.0mm from eyelet on positive side.

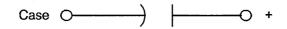
FIGURE 1 - PARAMETER DERATING INFORMATION


Rated Voltage versus Temperature

PAGE 14

ISSUE 3

FIGURE 2 - PHYSICAL DIMENSIONS



CASE SIZE	SYMBOL	MILLIM	ETRES
CASE SIZE	STIVIDOL	MIN	MAX
	Е	6.48	8.05
Α	F	3.05	3.84
	G	-	10.70
	Н	0.46	0.56
	Е	11.25	12.80
В	F	4.32	5.11
	G	-	15.50
	Н	0.461	0.56
	E	16.60	18.20
С	F	6.96	7.75
	G		20.90
	Н	0.58	0.69
	Е	19.20	20.80
D	F	8.53	9.32
	G	-	23.40
	Н	0.58	0.69

NOTES

1. The case insulation shall extend 0.4mm minimum beyond each end of the capacitor body. If a shrink-fitted insulation is used, it shall overlap the ends of the capacitor body.

FIGURE 3 - FUNCTIONAL DIAGRAM

PAGE 15

ISSUE 3

4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the capacitors specified herein are stated in this specification and ESA/SCC Generic Specification No. 3002 for Capacitors, Fixed, Tantalum, Solid Electrolyte. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in and Electrical Measurements (Chart III)

(a) Para. 9.7.3, Electrical Measurements at High and Low Temperatures shall be made on a sample basis as specified in Para. 4.6.2 of this specification.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the capacitors specified herein shall be verified in accordance with the requirements set out in Para. 9.4 of ESA/SCC Generic Specification No. 3002 and they shall conform to those shown in Figure 2 of this specification.

4.3.2 Weight

The maximum weight of the capacitors specified herein shall be as scheduled in Table 1(a).

4.3.3 <u>Terminal Strength</u>

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 3002.

The test conditions shall be as follows:-

(a) Pull Force: 14 Newtons.

The force shall be applied gradually to the terminal and then maintained for a period of 5 to 10 seconds.

PAGE 16

ISSUE 3

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the capacitors specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

Metal, corrosion-resistant, hermetically sealed.

4.4.2 Lead Material and Finish

The lead material shall be Type 'E' with Type '4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500.

4.4.3 Sleeving

Sleeving shall be of a non-fungus nutrient material (cardboard shall not be used). The material shall not soften, creep or shrink to the extent that it causes any part of the cylindrical case to become uncovered at any test temperature specified herein. At any cross-section, the maximum thickness of the sleeving shall not exceed twice the minimum thickness of the sleeves.

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700 and the following paragraphs. When the component is too small to accommodate all of the marking as specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) Polarity.
- (b) The SCC Component Number.
- (c) Electrical Characteristics and Ratings.
- (d) Traceability Information.

4.5.2 Polarity

Polarity shall be defined by a '+' on that end of the body of a capacitor where the positive lead protrudes (see Figure 2).

4.5.3 The SCC Component Number

The SCC Component Number shall be constituted and marked as follows:-

	3002002015
Detail Specification Number	
Type Variant (see Note)	
Testing Level (B or C. as applicable)	

N.B.

Marking of the Type Variant Number is mandatory. No further reference to Type Variants is made in this specification.

PAGE 17 ISSUE 3

4.5.4 Electrical Characteristics and Ratings

The electrical characteristics and ratings to be marked in the following order of precedence are:-

- (a) Capacitance Value.
- (b) Tolerance.
- (c) Rated Voltage.

The information shall be constituted and marked as follows:-

Capacitance Value (68 000 000pF)	686KE
Tolerance (±10%)	
Rated Voltage (15V)	

4.5.4.1 Capacitance Values

The capacitance values shall be expressed by means of the following codes. The unit quantity for marking shall be picofarads.

Capacitance Value	Code
X.X	XRX
XX	XX0
XX10 ¹	XX1
XX10 ²	XX2
XX10 ³	XX3
XX10 ⁴	XX4
XX10 ⁵	XX5
XX10 ⁶	XX6
XX10 ⁷	XX7

4.5.4.2 Tolerances

The tolerances on capacitance values shall be indicated by the code letters specified hereafter.

Tolerance (±%)	Code Letter
10	K
20	М

4.5.4.3 Rated Voltage

The rated voltage shall be indicated by the code letters specified hereafter.

Rated Voltage (U _R) (V)	Code Letter
6.0	Α
10	D
15	E
20	F
35	J
50	L
75	Р
100	Q

PAGE 18

ISSUE 3

4.5.5 Traceability Information

Traceability information shall be marked in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

- (a) Manufacturing Date Code.
- (b) Serial Number.
- (c) Manufacturer's Name.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured at room temperature are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. The AQL shall be 2.5% for each capacitance value. Each capacitance value shall be considered as constituting a complete lot. For qualification or lot acceptance testing, the sample size shall be as specified in ESA/SCC Generic Specification No. 3002.

4.6.3 Circuits for Electrical Measurements (Figure 4)

Not applicable.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at T_{amb} = +22±3 °C. The parameter drift values (Δ) applicable to the parameters scheduled shall not be exceeded. In addition to these drift value requirements for a given parameter, the appropriate limit value specified in Table 2 shall not be exceeded.

4.7.2 Conditions for Burn-in

The requirements for burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 3002. The conditions for burn-in shall be as specified in Table 5 of this specification.

On completion of burn-in, a recovery period of 24 ± 2 hours is necessary before performance of the end-measurements.

The power supply source shall be capable of 30 Amperes minimum and shall be applied without series resistors to the capacitors under test.

4.7.3 <u>Electrical Circuit for Burn-in (Figure 5)</u>

Not applicable.

PAGE 19 ISSUE 3

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE

No.	Characteristics	Symbol	ESA/SCC 3002	3002 Test Conditions		Limits		
INO.	Characteristics	Symbol	Test Method	rest Conditions	Min.	Max.	Unit	
1	Capacitance	С	Para. 9.7.1.1	$f = 120 \pm 5.0 \text{ Hz}$ $V_p \le 2.2V$ $V_m \le 1.0V \text{rms}$	Not	e 1	μF	
2	D.C. Leakage Current	լ	Para. 9.7.1.2	$V_{m} = U_{R} \pm 2.0\%$ $R_{s} = 1.0k\Omega$	Not	e 2	μA	
3	Dissipation Factor	DF	Para. 9.7.1.3	f = 120 ± 5.0 Hz	Not	e 3	%	

NOTES

- 1. See Columns 3 and 4 of Table 1(a). Allowable change after surge voltage test = ±2.0% of initial value.
- 2. See Column 5 of Table 1(a).
- 3. See Column 8 of Table 1(a).

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

No.	Characteristics	Symbol ESA/SCC 3002		Test Conditions	Lin	Unit	
NO.	Orlaracteristics	Symbol	Test Method	rest conditions	Min.	Max.	Offic
1	Capacitance Change	<u>∆</u> C	Para. 9.7.1.1	f=120 \pm 5.0 Hz $V_p \le 2.2V$ $V_m \le 1.0Vrms$ $T_{amb} = -55^{\circ}C$ $T_{amb} = +85^{\circ}C$ $T_{amb} = +125^{\circ}C$ (1)	-10 -8.0 -12	+ 10 + 8.0 + 12	%
2	D.C. Leakage Current	ا	Para. 9.7.1.2	$V_{m} = U_{R} \pm 2.0\%$ $R_{s} = 1.0k\Omega$ $T_{amb} = +85^{\circ}C$ $T_{amb} = +125^{\circ}C$ (1) (2)		e 3 e 4	μА
3	Dissipation Factor	DF	Para. 9.7.1.3	f=120 \pm 5.0 Hz $T_{amb} = -55^{\circ}C$ $T_{amb} = +85^{\circ}C$ $T_{amb} = +125^{\circ}C$ (1)	Not	e 5	%

NOTES

- 1. Applicable to Para. 9.15 of ESA/SCC Generic Specification No. 3002.
- 2. Applicable to Para. 9.18.1 of ESA/SCC Generic Specification No. 3002.
- 3. See Column 6 of Table 1(a).
- 4. See Column 7 of Table 1(a).
- 5. See Columns 8 and 9 of Table 1(a).

PAGE 20 ISSUE 3

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

Not applicable.

TABLE 4 - PARAMETER DRIFT VALUES

No.	Characteristics	Symbol	Spec. and/or Test Method	Test Conditions	Change Limits (Δ)	Unit
1	Capacitance Change	<u>ΔC</u> C	As per Table 2	As per Table 2	±2.0	%
2	D.C. Leakage Current	Ι <u>L</u>	As per Table 2	As per Table 2	Note 1	μA

NOTES

- 1. +200% of measured value or + (25% +0.05μA) of limit value, whichever is smaller.
- 2. Leakage currents ≤0.1µA are considered as 0.1µA value.

TABLE 5(a) - CONDITIONS FOR BURN-IN

No.	Characteristic	Symbol	Condition	Unit
1	Ambient Temperature	T _{amb}	+ 125	°C
2	Test Voltage	V _T	Rated voltage (Note 1)	V

NOTES

1. See Column 2 of Table 1(a).

TABLE 5(b) - CONDITIONS FOR OPERATING LIFE TESTS

No.	Characteristic	Symbol	Condition	Unit
1	Ambient Temperature	T _{amb}	+ 85 (1)	°C
2	Ambient Temperature	T _{amb}	+ 125 (2)	°C

NOTES

- 1. The test voltage shall be the rated voltage, see Column 2 of Table 1(a).
- 2. The test voltage shall be the derated voltage, see Figure 1.

FIGURE 5 - ELECTRICAL CIRCUIT FOR BURN-IN AND OPERATING LIFE TESTS

Not applicable.

PAGE 21

ISSUE 3

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION No. 3002)</u>

4.8.1 Measurements and Inspections on Completion of Environmental Tests

The parameters to be measured and inspections to be performed on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.2 Measurements and Inspections at Intermediate Points during Endurance Tests

The parameters to be measured and inspections to be performed at intermediate points during endurance tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.3 <u>Measurements and Inspections on Completion of Endurance Tests</u>

The parameters to be measured and inspections to be performed on completion of endurance testing are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ±3 °C.

4.8.4 Conditions for Operating Life Tests (Part of Endurance Testing)

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 3002. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 Electrical Circuit for Operating Life Tests (Figure 5)

Not applicable.

PAGE 22

ISSUE 3

TABLE 6 - MEASUREMENTS AND INSPECTIONS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

	ESA/SCC GENERIC	SPEC.NO. 3002	MEASUREMENTS A	AND INSPECTIONS		LIMITS		
NO.	ENVIRONMENTAL AND ENDURANCE TESTS (1)	TEST METHOD AND CONDITIONS	IDENTIFICATION	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT
01	Thermal Shock	Para. 9.2	Thermal Shock	Table 1(b)	-	-	-	-
02	Seal Test	Para. 9.6	Visual Examination	Evidence of Leakage	-	-	-	
03	Shock (Specified Pulse)	Para. 9.8 100% U _R	During Tests	Intermittent Contact, Arcing, Open or Short Circuits	-	•	-	-
			After Tests Visual Examination	Arcing, Breakdown or Mechanical Damage	-	-	-	-
04	Vibration	Para. 9.9 100% U _R	During Last Cycle	Intermittent Operation, Intermittent Contact or Open or Short Circuits	-	-	-	ı
<u> </u>			After Tests Visual Examination	Evidence of Mechanical Damage	-	-		-
05	Thermal Shock and Immersion	Para. 9.10.1 Before tests, 15 minutes at standard atmospheric conditions						
		Para. 9.10.2	Initial Measurements Capacitance Final Measurements	Table 2, Item 1 Within 30 minutes of final immersion	С	Table 2	l Item 1	μF
			Capacitance Change	Table 2, Item 1	<u>ΔC</u> C	-3.0	+3.0	%
:			D.C. Leakage Current Dissipation Factor Visual Examination	Table 2, Item 2 Table 2, Item 3 Corrosion, Mechanical Damage and Marking	I _L DF	Table 2 Table 2		μ Α %
06	Resistance to Soldering Heat	Para. 9.11	Initial Measurements Capacitance Final Measurements	Table 2, Item 1 After 10 minutes minimum	С	Table 2	Item 1	μF
			Capacitance Change	Table 2, Item 1	<u>∆C</u> C	-2.0	+2.0	%
			D.C. Leakage Current Dissipation Factor	Table 2, Item 2 Table 2, Item 3	I _L DF		Item 2 Item 3	μA %
07	Solderability	Para. 9.12	Visual Examination	MIL-STD-202 Method 208 Solid Wire Termination Criteria	-	-	-	-
08	Terminal Strength	Para. 9.13 and Para. 4.3.3 of this specification	Visual Examination	Loosening or Damage to Terminals	-	<u>-</u>	•	<u>-</u>

NOTES

1. The tests in this Table refer to either Chart IV or V and shall be used as applicable.

PAGE 23 ISSUE 3

TABLE 6 - MEASUREMENTS AND INSPECTIONS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (CONT'D)

	ESA/SCC GENERIC	SPEC.NO. 3002	MEASUREMENTS /	AND INSPECTIONS		LIM	ITS	
NO.	ENVIRONMENTAL AND ENDURANCE TESTS (1)	TEST METHOD AND CONDITIONS	IDENTIFICATION	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT
09	Moisture Resistance	Para. 9.14	Initial Measurements Capacitance Final Measurements	Table 2, Item 1 Within 2 to 6 hours	C	Table 2		μF
			Capacitance Change D.C. Leakage Current	Table 2, Item 1 Table 2, Item 2	<u>ΔC</u> C I∟	-2.0 Table 2	+ 2.0 ! Item 2	% μA
			Dissipation Factor Visual Examination	Table 2, Item 3 Corrosion, Mechanical Damage and Marking	DF -	Table 2 -	! Item 3 -	% -
10	High and Low Temperature Stability	Para. 9.15	Initial Measurements Capacitance Final Measurements	Table 3, Item 1	С	Table 3		μF
			Capacitance Change	Table 3, Item 1	<u>ΔC</u> C	Table 3		μF
			D.C. Leakage Current Dissipation Factor	Table 3, Item 2 Table 3, Item 3	l _L DF	Table 3 Table 3		μA %
11	Surge Voltage	Para. 9.16 and Table 1(a) of this specification	Initial Measurements Capacitance After Final Cycle	Table 2, Item 1	С	Table 2	item 1	μF
			Capacitance Change	Table 2, Item 1	<u>∆C</u> C	-2.0	+ 2.0	%
			D.C. Leakage Current Dissipation Factor	Table 2, Item 2 Table 2, Item 3	l _L DF		Item 2 Item 3	μ Α %
12	Sleeving	Para. 9.17 Para. 9.17.1 1 minute ± 15 seconds	Voltage Proof Leakage Current	2000V	ΙL	-	20	μΑ
		Para. 9.17.2 1 minute (+15 - 0) seconds	Insulation Resistance	500 ± 50V	Ri	104	-	МΩ
13	Operating Life	Para. 9.18	Initial Measurements Capacitance D.C. Leakage Current Dissipation Factor Immediate	Table 2, Item 1 Table 2, Item 2 Table 2, Item 3	C L DF	Table 2 Table 2 Table 2	Item 2	μF μA %
		ļ	Measurements D.C. Leakage Current Final Measurements	Table 3 Item 2	ΙL	Table 3	Item 2	μΑ
			Capacitance Change	Table 2, Item 1	<u>ΔC</u> C	-2.0	+2.0	μF
			D.C. Leakage Current Dissipation Factor Sleeving Voltage Proof		I _L DF I _L		2 Item 2 2 Item 3 20	μΑ % μΑ
	·		Leakage Current Visual Examination	2000V Mechanical Damage	-	_	-	_

NOTES

1. The tests in this Table refer to either Chart IV or V and shall be used as applicable.

PAGE 24

ISSUE 3

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR SPRAGUE (F)

ITEMS AFFECTED		DESCRIPTION OF DEVIATIONS				
Paras. 4.2.2, 4.2.3, 4.2.4 and 4.2.5	Para. 9.6	-	The seal test shall be performed in accordance with MIL-STD-202, Method 112, Test Condition 'D'			
Paras. 4.2.2, 4.2.3, 4.2.4 and 4.2.5	Para. 9.7.1.1	-	The capacitance shall be measured at 100 ± 5.0 Hz			
Paras. 4.2.2, 4.2.3, 4.2.4 and 4.2.5	Para. 9.7.1.3	-	The dissipation factor shall be measured at 100 ± 5.0 Hz, using the correction formula:- DF $(120\text{Hz}) = \text{DF } (100\text{Hz}) \times 1.2$			
Paras. 4.2.4 and 4.2.5	Para. 9.14	-	The vibration test required during the moisture resistance test and to be performed in accordance with MIL-STD-202, Method 106, shall be omitted.			