

Page i

DIODES, LOW NOISE, VOLTAGE REGULATOR,

BASED ON TYPES 1N6309 THRU 1N6355

ESCC Detail Specification No. 5102/021

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 21

DIODES, LOW NOISE, VOLTAGE REGULATOR,

BASED ON TYPES 1N6309 THRU 1N6355

ESA/SCC Detail Specification No. 5102/021

space components coordination group

		Approv	ved by
Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy
Issue 1	March 1995	Tomment	Hours
			C –

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
	-			
	- - -			~

		ESA/SCC Detail Specification No. 5102/021		PAGE ISSUE	3 1
		TABLE OF CONTENTS			2000
1.	GENERAL			<u>r</u>	⁵ age 5
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Scope Component Type Varia Maximum Ratings Parameter Derating Info Physical Dimensions Functional Diagram High Temperature Test	ormation			5 5 5 5 5 5 5 5 5
2.	APPLICABLE DOCUM	IENTS			5
3.	TERMS, DEFINITION	S, ABBREVIATIONS, SYMBOLS AND U	NITS		5
4.	REQUIREMENTS				11
$\begin{array}{c} 4.1\\ 4.2\\ 4.2.1\\ 4.2.2\\ 4.2.3\\ 4.2.4\\ 4.2.5\\ 4.3\\ 4.3.1\\ 4.3.2\\ 4.3.3\\ 4.4\\ 4.4.1\\ 4.4.2\\ 4.5\\ 4.5.1\\ 4.5.2\\ 4.5.3\\ 4.5.3\\ 4.5.4\end{array}$	General Deviations from Generi Deviations from Specia Deviations from Specia Deviations from Final P Deviations from Burn-ir Deviations from Qualific Deviations from Lot Act Mechanical Requirement Dimension Check Weight Terminal Strength Materials and Finishes Case Lead Material and Finis Marking General Cathode Identification The SCC Component N Traceability Information	I In-process Controls roduction Tests and Electrical Measurements sation Tests ceptance Tests hts			11 11 11 11 11 12 12 12 12 12 12 12 12 1
4.6 4.6.1 4.6.2 4.6.3 4.7 4.7.1 4.7.2 4.7.3 4.7.4 4.7.5 4.8 4.8.1 4.8.2 4.8.3 4.8.4 4.8.5	Electrical Measurement Electrical Measurement Electrical Measurement Circuits for Electrical M Burn-in Tests Parameter Drift Values Conditions for High Ter Conditions for Power B Electrical Circuits for Hi Electrical Circuits for Po Environmental and End Electrical Measurement	s at Room Temperature s at High and Low Temperatures easurements nperature Reverse Bias Burn-in urn-in gh Temperature Reverse Bias Burn-in ower Burn-in urance Tests s on Completion of Environmental Tests s at Intermediate Points and on Completio g Life Tests perating Life Tests	on of Endurance Te	sts	13 13 13 13 13 13 13 13 13 19 19 19 19

	ESA/SCC Detail Specification No. 5102/021		PAGE	4
--	--	--	------	---

TABLES

<u>Page</u>

1(a)	Type Variants	6
1(b)	Maximum Ratings	9
2	Electrical Measurements at Room Temperature - d.c. Parameters	14
	Electrical Measurements at Room Temperature - a.c. Parameters	15
3(a)	Electrical Measurements at High Temperature	16
3(b)	Electrical Measurements at Low Temperature	16
4	Parameter Drift Values	17
5(a)	Conditions for High Temperature Reverse Bias Burn-in	18
5(b)	Conditions for Power Burn-in and Operating Life Tests	18
6	Electrical Measurements at Intermediate Points and on Completion of Endurance Testing	20

FIGURES

1	Parameter Derating Information	9
2	Physical Dimensions	10
3	Functional Diagram	10
4	Circuits for Electrical Measurements	17
5(a)	Electrical Circuit for High Temperature Reverse Bias Burn-in	18
5(b)	Electrical Circuit for Power Burn-in and Operating Life Tests	18

APPENDICES (Applicable to specific Manufacturers only) 'A' Agreed Deviations for Microsemi (U.S.A.)

21

5

1. <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics, test and inspection data for Diodes, Low Noise, Voltage Regulator, based on Types 1N6309 thru 1N6355. It shall be read in conjunction with ESA/SCC Generic Specification No. 5000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS

Variants of the basic diodes specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the diodes specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The derating information applicable to the diodes specified herein is shown in Figure 1.

1.5 PHYSICAL DIMENSIONS

The physical dimensions of the diodes specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

The functional diagram, showing lead identification, of the diodes specified herein, is shown in Figure 3.

1.7 HIGH TEMPERATURE TEST PRECAUTIONS

After application of lead finish, all tests which are performed at a temperature that exceeds +125°C shall be carried out in a 100% inert atmosphere.

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESA/SCC Generic Specification No. 5000 for Discrete Semiconductors.
- (b) MIL-STD-750, Test Methods and Procedures for Semiconductor Devices.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following symbols are used:-

 N_D = Noise Density.

 Z_{K} = Knee Impedance.

		(19) C 0V 0V	(pF)	2000	1900	1800	1650	1600	1400	1350	1300	1200	1150	1050	1000	900	800	700 ;
PAGE 6 ISSUE 1		(18) V _{Z2} Volt. Reg.	Ŝ	1.5	1.5	1.5	1.6	1.6	1.6	0.9	0.5	0.4	0.4	0.3	0.35	0.4	0.4	0.5
<u>7</u> 2		$(17) Z_{\rm K}$ at $I_{\rm Z1} =$ 250 µA	(C)	1200	1300	1400	1400	1400	1700	1400	1500	1300	1200	800	400	400	400	500
an a		(16) I _{R3} Note 3	(Au)	150	100	60	10	6.0	4.0	4.0	10	10	10	10	4.0	4.0	2.0	2.0
		(15) I _{R2} Note 2	(hd)	200	150	100	20	12	12	12	12	12	10	10	50	30	10	10
		(14) T _{CVZ}	(%/°C)	- 0.085	- 0.080	- 0.075	- 0.065	- 0.055 + 0.020	- 0.043 + 0.025	- 0.030 + 0.030	- 0.028 + 0.032	+ 0.045	+ 0.050	+ 0.060	+ 0.062	+ 0.068	+ 0.075	+ 0.076
		(13) I _{R1} Note 1	(hd)	100	60	30	5.0	3.0	2.0	2.0	5.0	5.0	5.0	5.0	2.0	2.0	1.0	1.0
	IS	(12) V _R	ŝ	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	2.0	2.5	3.5	4.0	5.0	6.0	7.0
ification	ARIAN	(11) Z _Z at ^I Z2	(Ω)	30	30	29	24	22	20	18	16	14	8.0	3.0	3.0	4.0	5.0	6.0
ESA/SCC Detail Specification No. 5102/021	TABLE 1(a) - TYPE VARIANTS	(10) I _{ZSM} Surge	Þ	2.5	2.2	2.0	1.8	1.65	1.5	1.4	1.27	1.17	1.10	0.97	1.23	1.16	1.07	0.97
SCC De No. (<u> </u>	(9) Izm	(MA)	177	157	141	128	117	118	66 6	06	83	76	68	63	57	52	47
ESA	TABI	(8) N _D at I _{Z1} = 250µA	(zHV/VHz)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	5.0	5.0	5.0	20	40
		(7) I _{Z2} Test Current	(MA)	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
		(6) V _Z Max. at I _{Z2}	Ŝ	2.52	2.835	3.15	3.465	3.78	4.095	4.515	4.935	5.355	5.88	6.51	7.14	7.875	8.61	9.555
		(5) V _Z Nom. at I _{Z2}	Ŝ	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1
		(4) Vz Min. at I _{Z2}	Ŝ	2.28	2.565	2.85	3.135	3.42	3.705	4.085	4.465	4.485	5.32	5.89	6.46	7.125	7.79	8.645
5		(3) V_{Z1} at $I_{Z1} =$ 250µA	Ŝ	1.1	1.2	1.3	1.5	1.8	2.0	2.4	2.8	3.3	4.3	5.2	6.0	6.6	7.5	8.4
		(2) Based on Type		1N6309	1N6310	1N6311	1N6312	1N6313	1N6314	1N6315	1N6316	1N6317	1N6318	1N6319	1N6320	1N6321	1N6322	1N6323
100.11°		(1) Variant		01	02	03	04	05	90	07	08	60	10	11	12	13	14	15

NOTES: See Page 8.

		(19) C C C OV	(pF)	600	500	450	400	350	325	300	275	260	240	220	200	185	175	170	165	155	145
PAGE 7 ISSUE 1		(18) V _{Z2} Volt. Reg.	ŝ	0.5	0.5	0.55	0.55	0.7	0.75	0.85	0.95	1.05	1.15	1.3	1.45	1.6	1.75	1.9	2.1	2.25	2.5
P⊿ SI		(17) Z _K at I ₂₁ = 250µA	(B)	500	550	550	550	600	600	600	500	500	500	500	500	600	600	700	800	900	1000
	·	(16) I _{R3} Note 3	(hA)	2.0	2.0	2.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		(15) I _{R2} Note 2	(Prd)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		(14) T _{CVZ}	(%/°C)	+ 0.079	+ 0.082	+ 0.083	+ 0.079	+ 0.082	+ 0.083	+ 0.085	+ 0.086	+ 0.087	+ 0.088	+ 0.090	+ 0.091	+ 0.092	+ 0.093	+ 0.094	+ 0.095	+ 0.095	+ 0.096
	۵	(13) I _{R1} Note 1	(M)	1.0	1.0	1.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	- TYPE VARIANTS (CONTINUED)	(12) V _R	Ŝ	8.0	8.5	9.0	9.9	11	12	14	15	17	18	21	23	25	27	30	33	36	39
cification	TS (COI	(11) Z _Z at ¹ Z2	(ΰ	6.0	7.0	7.0	8.0	10	12	14	18	20	24	27	32	40	50	55	65	75	85
ESA/SCC Detail Specification No. 5102/021	VARIAN	(10) ^I zsm Surge	(Þ	0.89	0.83	0.77	0.71	0.62	0.58	0.52	0.47	0.43	0.39	0.35	0.31	0.28	0.26	0.24	0.22	0.2	0.18
SCC De No. 5	TYPE	(9) I _{ZM}	(mA)	43	39	35	33	28	27	24	21	19	18	16	14	13	12	11	9.9	9.0	8.3
ESA	TABLE 1(a)	(8) ND at I _{Z1} = 250µA 1-3kHz	(zHV/VHz)	80	100	100	100	100	100	100	100	100	100	100	100	100	100	100	80	80	80
	1	(7) I _{Z2} Test Current	(WW)	20	20	20	9.5	8.5	7.8	7.0	6.2	5.6	5.2	4.6	4.2	3.8	3.4	3.2	3.0	2.7	2.5
		(6) V _Z Max. at I _{Z2}	ŝ	10.5	11.55	12.6	13.65	15.75	16.8	18.9	21	23.1	25.2	28.35	31.5	34.65	37.8	40.95	45.15	49.35	53.55
		(5) V ₂ Nom. at I ₂₂	Ŝ	10	11	12	13	15	16	18	20	22	24	27	30	33	36	39	43	47	51
Ð		(4) V _Z Min. at I _{Z2}	S	9.5	10.45	11.4	12.35	14.25	15.2	17.1	19	20.9	22.8	25.6	28.5	31.35	34.2	37.05	40.85	44.65	48.45
		(3) V_{Z1} at $I_{Z1} =$ 250µA	Ŝ	9.1	10	11	11.9	13.8	14.7	16.6	18.5	20.4	22.3	25.2	28	30.9	33.7	36.6	40.4	44.2	48
		(2) Based on Type		1N6324	1N6325	1N6326	1N6327	1N6328	1N6329	1N6330	1N6331	1N6332	1N6333	1N6334	1N6335	1N6336	1N6337	1N6338	1N6339	1N6340	1N6341
Yun MP		(1) Variant		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33

NOTES: See Page 8.

~		C (19) 0 at C (19)	(pF)	135	130	120	110	105	100	95	<u>06</u>	70	70	65	65	60	55
PAGE 8 ISSUE 1		(18) V _{Z2} Volt. Reg.	ŝ	2.7	2.9	3.2	3.4	3.8	4.2	4.4	4.8	5.2	5.6	7.0	7.5	9.0	12
<u> </u>		(17) Z_{K} at $I_{Z1} =$ 250µA	(U)	1200	1300	1500	1600	1800	2100	2400	2800	3200	4100	4500	5000	5600	6500
		(16) I _{R3} Note 3	(JuA)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		(15) I _{R2} Note 2	(hd)	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		(14) T _{CVZ}	(%/°C)	+ 0.097	+ 0.097	+ 0.098	+ 0.098	+ 0.099	+ 0.099	+ 0.110	+ 0.110	+ 0.110	+ 0.110	+ 0.110	+ 0.110	+ 0.110	+ 0.110
	(<u>O</u>	(13) ^I R1 Note 1	(Pud)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
c	- TYPE VARIANTS (CONTINUED)	(12) V _R	ŝ	43	47	52	56	62	69	76	84	91	66	114	122	137	152
cification	TS (CO	(11) Z _Z at I _{Z2}	(Ω)	100	125	155	180	220	270	340	500	600	850	1000	1200	1500	1800
ESA/SCC Detail Specification No. 5102/021	VARIAN	(10) I _{ZSM} Surge	(Þ)	0.17	0.15	0.13	0.125	0.115	0.1	0.095	0.085	0.08	0.07	0.065	0.06	0.05	0.045 1800
SCC De No. 5	ТҮРЕ	(9) I _Z M	(mA)	7.6	6.8	6.3	5.7	5.2	4.7	4.3	3.9	3.5	3.3	2.8	2.7	2.4	2.1
ESA	TABLE 1(a)	(8) N _D at I _{Z1} = 250µA	(zHV/Vц	80	80	80	80	80	80	80	80	80	80	80	80	80	80
	17	(7) I _{Z2} Test Current	(MA)	2.2	2.0	1.8	1.7	1.5	1.4	1.3	1.1	1.0	0.95	0.85	0.8	0.68	0.65
		(6) V _Z Max. at I _{Z2}	Ŝ	58.8	65.1	71.4	78.75	86.1	95.55	105	115.5	126	136.5	157.5	168	189	210
		(5) V _Z Nom. at I ₂₂	S	56	62	68	75	82	91	100	110	120	130	150	160	180	200
		(4) V _Z Min. at I _{Z2}	Ś	53.2	58.9	64.6	71.25	77.9	86.45	95	104.5	114	123.5	142.5	152	171	190
		(3) V_{Z1} at $I_{Z1} =$ 250µA	Ŝ	52.7	58.4	64.1	70.8	77.4	86	94.5	104	113	122	141	151	170	189
		(2) Based on Type		1N6342	1N6343	1N6344	1N6345	1N6346	1N6347	1N6348	1N6349	1N6350	1N6351	1N6352	1N6353	1N6354	1N6355
		(1) Variant		34	35	36	37	38	39	40	41	42	43	44	45	46	47

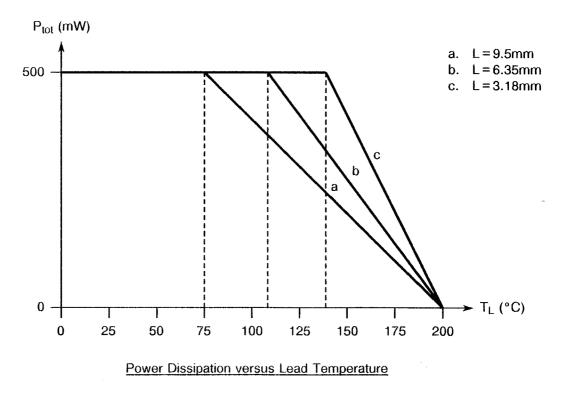
NOTES 1. Measured at T_{amb} = + 25°C. 2. Measured at T_{amb} = + 150°C. 3. Life Test End-point.

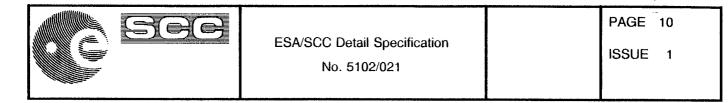
. .

No. 5102/021

ISSUE 1

TABLE 1(b) - MAXIMUM RATINGS


No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Power Dissipation	P _{tot}	500	mW	Note 1
2	Operating Temperature Range	T _{op}	– 65 to + 200	°C	ΤL
3	Storage Temperature Range	T _{stg}	- 65 to + 200	°C	-
4	Soldering Temperature	T _{sol}	+ 260	°C	Note 2


NOTES

1. At $T_L \le +75^{\circ}$ C. For derating at $T_L > +75^{\circ}$ C, see Figure 1 (L = 9.5mm from device body).

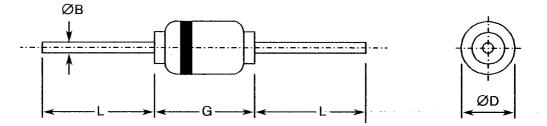

2. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

FIGURE 1 - PARAMETER DERATING INFORMATION

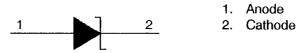


FIGURE 2 - PHYSICAL DIMENSIONS

SYMBOL	MILLIM	ETRES	NOTES
31MDOL	MIN.	MAX.	NOTES
ØВ	0.46	0.56	-
ØD	1.52	2.29	-
G	3.05	5.08	-
L	25.40	-	-

FIGURE 3 - FUNCTIONAL DIAGRAM

NOTES

1. The cathode end shall be marked with a coloured ring.

No. 5102/021

4. **REQUIREMENTS**

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 5000 for Discrete Semiconductors. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

None.

- 4.2.2 Deviations from Final Production Tests (Chart II)
 - (a) Para. 9.2.1, "Bond Strength Test": Shall not be performed.
 - (b) Para. 9.2.2, "Die Shear Test": Shall not be performed.
 - (c) Para. 9.6, "Constant Acceleration": Shall not be performed.
 - (d) Para. 9.7, "Particle Impact Noise Detection (PIND) Test": Shall not be performed.
 - (e) Para. 9.8.1, "Seal Test, Fine Leak": Shall not be performed.
 - (f) Para. 9.8.2, "Seal Test, Gross Leak": Shall be performed in accordance with MIL-STD-750, Method 1071, Test Condition 'E'.
 - (g) Immediately following Para. 9.3.3, Electrical Measurements at Room Temperature, a Surge Current test shall be performed in accordance with MIL-STD-750, Test Method 4066. The peak currents shown in column 10 of Table 1(a) shall be applied in the reverse direction and shall be superimposed on an I_{R2} as shown in column 7 of Table 1(a), a total of 5 times, at 1.0 minute intervals. Each surge shall be a 1/2 square wave pulse of 0.08 seconds duration or equivalent 1/2 sinewave with the same effective rms current. Immediately following completion, Table 2 Items 1, 2, 3 and 11 shall be measured on a go-no-go basis.

4.2.3 Deviations from Burn-in and Electrical Measurements (Chart III)

- (a) Para. 7.1.1(a), "High Temperature Reverse Bias (H.T.R.B.) Test": Shall not be performed for devices with V_Z (nom.)≤10V.
- (b) Para. 9.8.1, "Seal Test, Fine Leak": Shall not be performed.
- (c) Para. 9.8.2, "Seal Test, Gross Leak": Shall be performed in accordance with MIL-STD-750, Method 1071, Test Condition 'E'.
- (d) Para. 9.12, "Radiographic Inspection": Shall not be performed
- 4.2.4 <u>Deviations from Qualification Tests (Chart IV)</u>
 - (a) Para. 9.2.3, "Bond Strength Test": Shall not be performed.
 - (b) Para. 9.2.4, "Die Shear Test": Shall be replaced by a Thermal Resistance Test in accordance with MIL-STD-750, Method 3101 or 4081.
 - (c) Para. 9.15, "Constant Acceleration": Shall not be performed.
 - (d) Para. 9.8.1, "Seal Test, Fine Leak": Shall not be performed.
 - (e) Para. 9.8.2, "Seal Test, Gross Leak": Shall be performed in accordance with MIL-STD-750, Method 1071, Test Condition 'E'.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

- (a) Para. 9.8.1, "Seal Test, Fine Leak": Shall not be performed.
- (b) Para. 9.8.2, "Seal Test, Gross Leak": Shall be performed in accordance with MIL-STD-750, Method 1071, Test Condition 'E'.
- (c) Para. 9.15, "Constant Acceleration": Shall not be performed.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the diodes specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the diodes specified herein shall be 0.3 grammes.

4.3.3 <u>Terminal Strength</u>

The requirements for terminal strength testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The test conditions shall be as follows:-

Test Condition :'A' (Tension).Applied Force :5.0 Newtons.Duration :10 seconds

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the diodes specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 <u>Case</u>

Hard glass, hermetically sealed.

4.4.2 Lead Material and Finish

The lead material shall be Type 'L' with Type '4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500.

4.5 MARKING

4.5.1 General

The marking of components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700 and the following paragraphs. When the component is too small to accommodate all of the marking as specified, as much as space permits shall be marked and the marking information, in full, shall accompany the component in its primary package.

The information to be marked and the order of precedence, shall be as follows:-

- (a) Cathode Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Cathode Identification

Cathode identification shall be as shown in Figures 2 and 3 of this specification.

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured at room temperature are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.6.2 Electrical Measurements at High and Low Temperatures

The parameters to be measured at high and low temperatures are scheduled in Table 3. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +125(+0-5)$ °C and -65(+5-0) °C respectively

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits for use in performing the electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $T_{amb} = +22 \pm 3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-in

The requirements for high temperature reverse bias burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for high temperature reverse bias burn-in shall be as specified in Table 5(a) of this specification.

4.7.3 Conditions for Power Burn-in

The requirements for power burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 5000. The conditions for power burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 <u>Electrical Circuits for High Temperature Reverse Bias Burn-in (Figure 5(a))</u>

Not applicable.

4.7.5 <u>Electrical Circuits for Power Burn-in (Figure 5(b))</u>

Not applicable.

No. 5102/021

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

No.	CHARACTERISTICS I SYMBOL		MIL-STD-750	TEST CONDITIONS	LIM	ITS	UNIT
NO.		STMDUL	TEST METHOD	TEST CONDITIONS	MIN.	MAX.	UNIT
1	Zener Voltage	Vz	4022	I _{Z2} = Note 1	Note 2	Note 3	V
2	Forward Voltage	V _F	4011	I _F = 1.0Adc pulsed	-	1.4	V
3	Reverse Current	l _R	4016	V _R = Note 4 d.c. Method	-	Note 5	μА
4	Knee Voltage	V _{Z1}	4022	I _Z = 250μAdc	Note 6	-	V
5	Voltage Regulation	V _{Z2}	4022	IZ2 = Notes 1 and 7	-	Note 8	V
6	Thermal Resistance	R _{TH(J} -L)	3101 or 4081	$I_H = 200$ mA to 400mA $t_H = 25$ s minimum $I_M = 1.0$ mA to 10mA $t_{MD} = 100$ µs maximum Lead Spacing = 9.53mm Note 9	-	250	°C/W

- 1. See Column 7 of Table 1(a).
- 2. See Column 4 of Table 1(a).
- 3. See Column 6 of Table 1(a).
- 4. See Column 12 of Table 1(a).
- 5. See Column 13 of Table 1(a).
- 6. See Column 3 of Table 1(a).
- 7. The test current shall be applied until thermal equilibrium is attained (90 sec. min.) prior to reading the breakdown voltage. For this test, the diode shall be suspended by its leads with mounting clips whose inside edge is located at 9.53mm from the device body and the mounting clips shall be maintained at a temperature of +25(+8-2)°C. This measurement may be performed after a shorter time following application of the test current than that which provides thermal equilibrium if correlation to established readings can be established to the satisfaction of the Customer.
- 8. See Column 18 of Table 1(a).
- 9. To be performed instead of the Die Shear Test in Chart IV only.

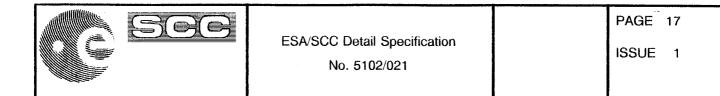
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750	TEST CONDITIONS	LIN	LIMITS	
110.	or war no ter no tioo	TEST METHOD		(NOTE 1)	MIN.	MAX.	UNIT
7	Small Signal Reverse Breakdown Impedance	ZZ	4051	I _{Z2} = Note 2 I _{sig} = 10% of I _Z	-	Note 3	Ω
8	Noise Density	ND	Figure 4(a)	l _{ZK} = 250µA f = 1-3kHz Note 4	-	Note 5	µV/√Hz
9	Knee Impedance	Z _K	4051	l _{ZK} = 250μA l _{sig} = 25μA(rms)	**	Note 6	Ω
10	Capacitance	С	4001	V _Z = 0V f = 1.0kHz	-	Note 7	рF
11	Thermal Impedance	Z _{TH(J-X)}	3101	$I_H = 2.0A$ minimum $t_H = 10ms$ $I_M = 1.0mA$ to 10mA $t_{MD} = 100\mu s$ maximum Note 8	-	15	°C/W

- 1. Tests to be performed on a sample basis, LTPD 7 or less.
- 2. See Column 7 of Table 1(a).
- 3. See Column 11 of Table 1(a).
- 4. Noise Voltage shall be measured using a noise density test circuit as shown in Figure 4(a). Place a low-noise resistor, equivalent in value to the dynamic impedance of the diode under test, in the test clips, and adjust test current (I_{ZT}) to 250µAdc and measure output-noise voltage. Remove the resistor, insert diode under test in test clips, readjust test current to 250µAdc and measure output-noise voltage again. To obtain noise density (N_D), subtract rms resistor output-noise voltage from rms diode output-noise voltage and divide by product of overall system gain and square root of bandwidth. All measurements shall be made at T_{amb} = +25°C.
- 5. See Column 8 of Table 1(a).
- 6. See Column 17 of Table 1(a).
- 7. See Column 19 of Table 1(a).
- 8. To be performed in Chart II only.

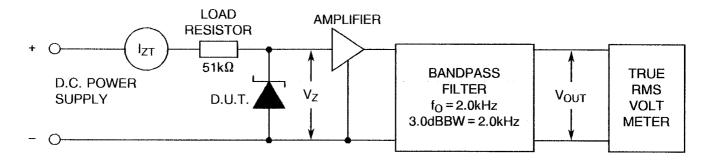
TABLE 3(a) - ELECTRICAL MEASUREMENTS AT HIGH TEMPERATURE

No.	CHARACTERISTICS	SYMBOL .	MIL-STD-750	TEST CONDITIONS	LIMITS		UNIT
INO. CHARACTERISTICS STILL		UTMDOL	TEST METHOD	(NOTE 1)	MIN.	MAX.	
3	Reverse Current	l _R	4016	V _R = Note 2 T _{amb} = + 150°C d.c. Method	-	Note 3	μА
12	Temperature Coefficient of Zener Voltage	T _{CVZ}	4071	I_{22} = Notes 4 and 5 T_1 = +25±5°C T_2 = +125°C	-	Note 6	%/°C


NOTES

- 1. Tests to be performed on a sample basis, LTPD 7 or less.
- 2. See Column 12 of Table 1(a).
- 3. See Column 15 of Table 1(a).
- 4. See Column 7 of Table 1(a).
- 5. Temperature coefficient of zener voltage. The device shall be temperature stabilised with current applied prior to reading breakdown voltage at the specified ambient temperature.
- 6. See Column 14 of Table 1(a).

TABLE 3(b) - ELECTRICAL MEASUREMENTS AT LOW TEMPERATURE


No. CHARACTERISTICS SYME		SVMDOI	MIL-STD-750	TEST CONDITIONS	LIMITS		UNIT
	5 TWDOL	TEST METHOD	(NOTE 1)	MIN.	MAX.	- UNIT	
12	Temperature Coefficient of Zener Voltage	T _{CVZ}	4071	$I_{22} = Notes 2 and 3$ $T_1 = +25 \pm 5^{\circ}C$ $T_2 = -65^{\circ}C$	-	Note 4	%/°C

- 1. Tests to be performed on a sample basis, LTPD 7 or less.
- 2. See Column 7 of Table 1(a).
- 3. Temperature coefficient of zener voltage. The device shall be temperature stabilised with current applied prior to reading breakdown voltage at the specified ambient temperature.
- 4. See Column 14 of Table 1(a).

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

CIRCUIT FOR DETERMINATION OF NOISE DENSITY

NOTES

- 1. Input voltage and load resistance should be high so that the zener can be driven from a constant current source.
- 2. Input impedance of band pass filter should be high compared with dynamic impedance of the diode under test.
- 3. Filter bandwidth characteristics shall be as follows:

 $\label{eq:FO} \begin{array}{l} \mbox{F}_{O} = 2000\mbox{Hz}. \\ \mbox{Shape factor, } -40\mbox{dB to } -3.0\mbox{dB, approximately 2.} \\ \mbox{Passband at the } -3.0\mbox{db point is } 1000 \pm 50\mbox{Hz to } 3000 \pm 150\mbox{Hz}. \\ \mbox{Passband at the } -40\mbox{db point is } 500 \pm 50\mbox{Hz to } 6000\mbox{db tz}. \end{array}$

TABLE 4 - PARAMETER DRIFT VALUES

No	. CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
3	Reverse Current	I _R	As per Table 2	As per Table 2	±50 or (1) ±100	nA %
5	Voltage Regulation	V _{Z2}	As per Table 2	As per Table 2	± 1.0	%

NOTES

1. Whichever is greater, referred to the initial value.

TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

No.	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0 - 5)	°C
2	Reverse Voltage	V _R	Note 1	V
3	Duration	t	48	Hrs

NOTES

1. 80% of Table 1(a), Column 5 for devices where V_Z (nom.) \ge 10V.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

No.	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 30 ± 5	°C
2	Working Current	I _{ZM}	Notes 1 and 2	mA
3	Mounting Conditions	-	As per MIL-STD-750, Test Method 1026	-

NOTES

1. See Column 9 of Table 1(a).

2. I_{ZM} (min.) = 50% at +25°C. I_{ZM} to be adjusted for +150°C $\leq T_J \leq$ +175°C.

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

Not applicable.

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC</u> SPECIFICATION NO. 5000)

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 2. Unless otherwise stated, the measurements shall be performed at T_{amb} = +22 ± 3 °C.

4.8.2 <u>Electrical Measurements at Intermediate Points and on Completion of Endurance Tests</u>

The parameters to be measured at intermediate points and on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Conditions for Operating Life Tests (Part of Endurance Testing)</u>

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 5000. The conditions for operating life testing shall be the same as specified in Table 5(b) for power burn-in.

4.8.4 <u>Electrical Circuits for Operating Life Tests (Figure 5(b))</u> Not applicable.

4.8.5 <u>Conditions for High Temperature Storage Test (Part of Endurance Testing)</u>

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 5000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

TABLE 6 - ELECTRICAL MEASUREMENTS AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

No.	CHARACTERISTICS	SYMBOL	MIL-STD-750 TEST	TEST	CHANGE LII LIMITS		ITS	UNIT
INO.	CHARACTERISTICS	51MBOL	METHOD	CONDITIONS	(Δ)	MIN.	MAX.	UNIT
1	Zener Voltage	Vz	As per Table 2	As per Table 2	- ± 1.0	Note 1	Note 2	V %
2	Forward Voltage	VF	As per Table 2	As per Table 2	-	-	1.4	V
3	Reverse Current	I _R	As per Table 2	As per Table 2	± 0.05 or (3) 100	-	Note 4	μΑ %
9	Knee Impedance	Z _K	As per Table 2	As per Table 2	-	-	Note 5	Ω

- 1. See Column 4 of Table 1(a).
- 2. See Column 6 of Table 1(a).
- 3. Whichever is greater, referred to the initial value.
- 4. See Column 16 of Table 1(a).
- 5. See Column 17 of Table 1(a).

No. 5102/021

ISSUE 1

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR MICROSEMI (U.S.A.)

ITEMS AFFECTED DESCRIPTION OF DEVIATIONS				
General deviations from ESA/SCC Generic Specification No. 5000	Para. 9.1, Internal Visual Inspection: Test Method 2074 of MIL-STD-750 may be used. Internal Visual Inspection may be performed at any point prior to painting the diode.			
	Para. 9.10, External Visual Inspection: Test Method 2071 of MIL-STD-750 may be used.			
	Para. 9.18, Permanence of Marking: Test Method 1022 of MIL-STD-750 may be used.			