

Page i

POLYIMIDE INSULATED SHIELDED CABLES

WITH DRAIN WIRE, LOW FREQUENCY,

600V, -200 TO +200 °C

BASED ON TYPE SPLD

ESCC Detail Specification No. 3901/021

ISSUE 1 October 2002

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2002. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Ageny and provided that it is not used for a commercial purpose, may be:

- copied in whole in any medium without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

european space agency agence spatiale européenne

Pages 1 to 20

POLYIMIDE INSULATED SHIELDED CABLES

WITH DRAIN WIRE, LOW FREQUENCY,

600V, -200 TO +200 °C

BASED ON TYPE SPLD

ESA/SCC Detail Specification No. 3901/021

space components coordination group

	Date	Appro	ved by
Issue/Rev.		SCCG Chairman	ESA Director General or his Deputy
Issue 1	June 1995	Tomoment	Horm
			2

No. 3901/021

DOCUMENTATION CHANGE NOTICE

Rev. Letter	Rev. Date	Reference	CHANGE Item	Approved DCR No.
	-			

	SCC	ESA/SCC Detail Specification No. 3901/021		PAGE 3 ISSUE 1	
		TABLE OF CONTENTS		Doo	~
1.	GENERAL			Page	<u>e</u> 5
1.1 1.2 1.3 1.4 1.5 1.6	Scope Type Variants Maximum Ratings Parameter Derating Info Physical Characteristics Functional Diagram				5 5 5 5 5 5 5 5
2.	APPLICABLE DOCUM	IENTS			0
3.		S, ABBREVIATIONS, SYMBOLS AND U	NITS	1'	0
4.	REQUIREMENTS			1	0
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.5 4.4.6 4.4.7 4.5	Deviations from Qualifie Deviations from Lot Ac Mechanical Requireme Dimension Check Weight Materials and Finishes Conductor Insulation Shield Drain Wire Jacket Construction of Multico Colour Coding	I In-process Controls roduction Tests a and Electrical Measurements cation, Environmental and Endurance Test ceptance Tests nts	ts	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 3 3 3 3 3 4
$\begin{array}{c} 4.5\\ 4.5.1\\ 4.5.2\\ 4.5.3\\ 4.5.4\\ 4.5.5\\ 4.6\\ 4.6.1\\ 4.6.2\\ 4.6.3\\ 4.7\\ 4.8\\ 4.8.1\\ 4.8.2\\ 4.8.3\\ 4.8.4\\ 4.8.5\\ 4.8.5\\ 4.8.6\\ 4.8.7\end{array}$		ts at Room Temperature ts at High and Low Temperatures leasurements lurance Tests of Conductor		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6

	See	ESA/SCC Detail Specification No. 3901/021	PAGE 4 ISSUE 1
4.8.8 4.8.9 4.8.10 4.8.11 4.8.12 4.8.13 4.8.14 4.8.15 4.8.16 4.8.17 4.8.18 4.8.19	Cut-through Resistance Notch Resistance Flammability Resistance to Fluids Surface Resistance Abrasion Resistance Soldering Solderability Radiation Resistance Overload Resistance Long-term Ageing Test Anthony and Brown Test		Page 18 18 18 18 18 18 18 19 19 19 19 19 19 19
TABLES	<u>S</u>		
1(a) 1(b) A B C 2	Mandrel Diameters and Mandrel Diameters and	Loads for Finished Wires Loads for Shielded and Jacketed Cables Loads for Finished Wires or Cores s at Room Temperature	6 8 16 17 18 19
FIGURE	ES		
1 2	Parameter Derating Info		8 9

20

APPENDICES (Applicable to specific Manufacturers only)'A'Agreed Deviations for W.L. GORE & Associates (GmbH)

1. <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics, test and inspection data for Polyimide Insulated Cables with Drain Wire, Low Frequency, 600V, -200 to +200 °C, based on Type SPLD. It shall be read in conjunction with ESA/SCC Generic Specification No. 3901, the requirements of which are supplemented herein.

NOTES

1. These cables shall not be used in the presence of hydrazine or nitrogen tetroxide.

1.2 <u>TYPE VARIANTS</u>

Variants of the basic types of cables specified herein which are also covered by this specification, are listed in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, applicable to the finished cables specified herein, which shall not be exceeded at any time during use or storage in controlled space environment, are scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION

The derating information applicable to the finished wires and cables specified herein is as follows:

The maximum current for each wire used in a bundle shall be:-

$$I_{Bmax} = I_{max} \times \frac{29 - n}{28}$$
 (for 1 < n < 15)

$$I_{Bmax} = \frac{I_{max}}{2}$$
 (for n > 15)

where n = number of wires in the bundle;

- The temperature derating information is shown in Figure 1 with maximum current I_{max} for a single wire.
- The derating factors contained herein indicate maximum stress values and do not preclude further derating.

1.5 PHYSICAL CHARACTERISTICS

The physical characteristics of the finished cables specified herein are shown in Figure 2.

1.6 FUNCTIONAL DIAGRAM

Not applicable.

PAGE 6 ISSUE 1
ESA/SCC Detail Specification No. 3901/021

TABLE 1(a) - TYPE VARIANTS

MAX Ø (mm) NOM SECT. MAX OHMIC (mm ²) MAX OHMIC (mm ²) MAX OFMIC (mm ²) MAX Ø (mm ²) 0.032 0.0657 375 0.0663 0.78 1.4 0.332 0.005 375 0.0063 0.87 1.6 0.332 0.0160 253 0.079 0.87 1.6 0.40 253 0.079 1.13 2.1 1.6 0.56 111 0.079 1.26 2.4 2.9 0.56 21 0.079 1.26 2.4 2.9 1.29 0.96 32 0.079 1.26 2.4 2.9 1.49 1.20 14 0.079 1.70 3.9 2.7 3.9 0.140 1.20 14 0.079 1.70 3.9 2.1 3.9 1.49 1.20 1.49 1.20 1.4 2.9 2.9 2.9 1.20 1.120 1.12 0.079 1.98 2.7 2.7 2.7		No. OF		WIRE	STRANDING	CONDUC	CONDUCTOR CHARACTERISTICS	TERISTICS	SHIELD	CORE MAX Ø	FINISHED WIRE OR CABLE CHARACTERISTICS	E OR CABLE ERISTICS
0.32 0.067 375 0.063 0.76 1.4 1.4 (1) 0.33 0.09 253 0.079 0.87 1.6 1.6 (1) 0.47 0.15 157 0.079 0.37 1.6 1.6 (1) 0.58 0.25 111 0.079 1.13 2.1 1.6 (1) 0.76 0.40 58 0.079 1.13 2.1 1 (1) 0.76 0.40 58 0.079 1.26 2.4 1 (1) 0.79 0.26 114 0.079 1.26 2.4 1 (1) 0.29 0.60 32 0.079 1.48 2.9 1 (1) 0.23 0.06 323 0.76 2.70 2.7 2.7 (1) 0.47 0.179 0.79 0.79 2.70 2.7 2.7	G)	SIZE ISO/(AWG)		No. OF × DIAM	STRANDS ETER (mm)	MAX Ø (mm)	NOM SECT. (mm ²)	MAX OHMIC RESISTANCE (Ω/km)	Ø (mm)	(mm)	MAX Ø (mm)	MAX WEIGHT (kg/km)
0.39 0.09 253 0.079 0.87 1.6 1.6 (1) 0.47 0.15 157 0.079 0.99 1.8 1.7 (1) 0.58 0.26 111 0.079 1.13 2.1 1.7 (1) 0.76 0.40 58 0.079 1.13 2.4 1 (1) 0.76 0.40 58 0.079 1.78 2.9 1 (1) 0.79 0.80 32 0.079 1.78 2.9 1 (1) 0.99 0.80 32 0.079 1.70 2.9 3 (1) 2.18 3.00 7.0 0.079 1.70 2.9 3 (1) 0.47 0.09 1.20 0.14 0.079 2.70 2.9 3 (1) 0.14 0.053 0.079 0.136 0.18 2.3	- /(30) 07×0.102 1 - /(30) 07×0.102			07×0.1	02	0.32	0.057	375	0.063	0.78	1.4	3.4
(1) 0.47 0.15 157 0.079 1.13 1.8 (1) 0.58 0.25 111 0.079 1.13 2.1 1 (1) 0.76 0.40 58 0.079 1.26 2.4 1 (1) 0.76 0.60 32 0.079 1.26 2.9 1 (1) 0.99 0.60 32 0.079 1.26 2.9 1 (1) 1.29 0.96 21 0.079 1.70 3.9 3 (1) 1.29 0.96 210 0.079 1.20 3.9 3 (1) 1.49 1.20 1.20 1.4 0.079 1.20 3.9 7 0.32 0.06 21.0 0.079 0.76 2.70 3.9 7 0.32 0.05 0.05 3.20 0.079 0.78 2.27 9 7 0.33 0.06 258 0.079 0.78 2.70 2.7 1 7 0.37 0.15 170 0.079 0.78 2.7 1 7 0.39 0.60 258 0.079 0.78 2.7 1 1 0.76 0.76 0.75 0.79 0.78 2.7 1 7 0.79 0.75 0.79 0.79 2.7 1 8 0.76 0.79 0.79 0.79 2.7 1 1 0.76 0.76 0.79 0.79 2.7 1 <tr< td=""><td>- /(28) 07×0.127 1 - /(28) 07×0.127</td><td></td><td></td><td>07 × 0.</td><td>127</td><td>0.39</td><td>0.09</td><td>253</td><td>0.079</td><td>0.87</td><td>1.6</td><td>4.4</td></tr<>	- /(28) 07×0.127 1 - /(28) 07×0.127			07 × 0.	127	0.39	0.09	253	0.079	0.87	1.6	4.4
(1) 0.58 0.25 111 0.079 1.3 2.1 2.1 (1) 0.76 0.40 58 0.079 1.26 2.4 1 (1) 0.09 0.60 32 0.079 1.26 2.9 1 (1) 1.29 0.36 21 0.079 1.70 3.9 3 (1) 1.29 0.36 21 0.079 1.70 3.9 3 (1) 1.49 1.20 1.20 1.4 2.9 1 7 0.32 0.067 383 0.079 2.70 5.3 3 7 0.32 0.067 383 0.063 0.78 2.5 3 7 0.32 0.067 383 0.063 0.78 2.5 3 7 0.32 0.067 383 0.063 0.78 2.70 5.3 1 7 0.39 0.067 383 0.063 0.78 2.70 5.3 1 7 0.39 0.079 1.70 0.97 0.78 2.5 1 7 0.78 0.079 0.78 0.78 2.7 1 7 0.76 0.269 0.76 0.97 2.73 8.0 2.8 7 0.079 0.78 0.079 0.97 2.73 8.0 2.9 7 0.99 0.76 0.78 0.079 0.78 2.73 8.0 7 0.92 0.78 0.079 0.75	001/(26) 19×0.10 (1) 1 001/(26) 19×	001/(26) 1	_	19 X	9×0.10 (1)	0.47	0.15	157	0.079	0.99	1.8	5.8
(1) 0.76 0.40 58 0.079 1.26 2.4 1 (1) 0.99 0.60 32 0.079 1.48 2.9 1 (1) 1.29 0.96 32 0.079 1.70 3.9 3 (1) 1.49 1.20 1.20 1.70 3.9 3 (1) 1.49 1.20 1.4 0.079 1.70 3.9 3 (1) 2.18 3.00 7.0 0.079 1.96 4.0 3 7 0.32 0.057 383 0.063 0.78 2.2 4 7 0.39 0.09 258 0.079 0.87 2.2 4 7 0.39 0.09 258 0.079 1.13 3.3 1 7 0.56 0.25 170 0.079 1.13 3.7 1 1 0.76 0.40 63 0.079 1.13 3.3 1 1 0.76 0.760 357 1.13 3.7 1 1 0.76 0.790 0.79 0.87 2.72 8.0 1 0.76 0.790 0.79 0.78 2.70 5.3 4 1 0.76 0.790 0.79 0.78 2.72 4 1 0.76 0.79 0.79 2.73 8.0 2 1 0.79 0.79 0.79 2.73 8.0 2 1 0.39 0.079 0.79 0.79 <	002/(24) 19×0.12 (1) 1 002/(24) 19×			19×	19×0.12 (1)	0.58	0.25	111	0.079	1.13	2.1	7.4
(1) 0.99 0.60 32 0.079 1.48 2.9 1 1.29 0.96 21 0.079 1.70 3.9 3 (1) 1.49 1.20 1.20 1.4 2.70 3.9 3 (1) 2.18 3.00 7.0 0.079 1.98 4.0 3 7 0.32 0.057 383 0.063 0.78 2.2 6 7 0.39 0.09 258 0.079 0.78 2.2 1 7 0.39 0.09 258 0.079 1.13 2.3 1 (1) 0.76 0.40 63 0.079 1.13 3.3 1 (1) 0.76 0.40 63 0.079 1.16 3.7 1 (1) 0.76 0.40 63 0.079 1.13 3.3 1 (1) 0.76 0.76 0.78 2.73 8.0 2.6 (1) 0.76 0.70 0.079 1.16 3.7 1 (1) 0.99 0.60 355 0.079 0.78 2.3 1 (1) 0.99 0.60 3.7 1.26 3.7 1 (1) 0.99 0.60 3.7 1.26 3.7 1 (1) 0.99 0.60 3.7 1.26 3.7 1 (1) 0.99 0.60 3.7 0.79 2.73 8.0 7 0.32 0.079 </td <td>004/(22) 19×0.15 (1) 1 004/(22) 19×</td> <td></td> <td></td> <td>19></td> <td>19×0.15 (1)</td> <td>0.76</td> <td>0.40</td> <td>58</td> <td>0.079</td> <td>1.26</td> <td>2.4</td> <td>11</td>	004/(22) 19×0.15 (1) 1 004/(22) 19×			19>	19×0.15 (1)	0.76	0.40	58	0.079	1.26	2.4	11
	006/(20) 19×0.20 (1) 1 006/(20) 19>	-	-	19>	19×0.20 (1)	0.99	0.60	32	0.079	1.48	2.9	17
(1) 1.49 1.20 14 0.079 1.98 4.0 3 2 2.18 3.00 7.0 0.079 2.70 5.3 6 7 0.32 0.057 383 0.079 2.70 5.3 6 7 0.32 0.09 2.18 3.00 7.0 0.079 2.70 5.3 6 7 0.32 0.09 2.58 0.079 0.87 2.5 2.5 2.5 7 0.040 0.15 170 0.079 1.13 2.5 1 (1) 0.056 0.25 120 0.079 1.13 3.3 1 (1) 0.076 0.25 120 0.079 1.13 3.3 1 (1) 0.160 35 0.079 1.13 3.3 2.8 2 (1) 0.199 0.50 0.079 1.16 3.7 1 1 (1) 0.199 0.60 35 0.079 1.16 3.7 1 (1) 0.32 0.60 35 0.079 1.26 3.7 2.7 2 0.32 0.079 1.26 2.3 2.3 2.3 2.3 (1) 0.32 0.079 0.78 2.73 8.0 2.3 2.3 2 0.32 0.079 0.79 0.87 2.73 8.0 2.3 2 0.32 0.063 0.079 0.87 2.73 8.0 2.73 2	19×0.25 1 - /(18)	_	_	19 X	19×0.25	1.29	0.96	21	0.079	1.70	3.9	30
(1) 2.18 3.00 7.0 0.079 2.70 5.3 6 7 0.32 0.057 383 0.063 0.78 2.2 5.3 6 7 0.39 0.09 258 0.079 0.87 2.2 7 (1) 0.47 0.15 170 0.079 0.87 2.2 7 (1) 0.76 0.15 170 0.079 1.13 2.3 1 (1) 0.76 0.40 63 0.079 1.13 3.3 1 (1) 0.76 0.40 63 0.079 1.13 3.3 1 (1) 0.76 0.25 120 0.079 1.48 4.3 2 (1) 0.30 0.673 0.079 1.48 4.3 2 (1) 0.32 0.079 1.48 4.3 2 2	012/(16) 19×0.30 (1) 1 012/(16) 19×	-	-	19 X	9×0.30 (1)	1.49	1.20	14	0.079	1.98	4.0	34
(1) 0.32 0.057 383 0.063 0.78 2.2 2.2 (1) 0.39 0.09 258 0.079 0.87 2.5 2.8 (1) 0.47 0.15 170 0.079 0.87 2.8 1 (1) 0.58 0.25 120 0.079 1.13 2.8 1 (1) 0.58 0.25 120 0.079 1.13 3.3 1 (1) 0.76 0.40 63 0.079 1.13 3.3 2 (1) 0.78 0.20 120 1.26 3.7 1 (1) 1.49 1.20 1.5 0.079 1.48 4.3 2 (1) 1.49 1.20 1.5 0.079 1.48 4.3 2 (1) 2.18 3.00 3.5 0.079 1.48 4.3 2 (1) 2.18 3.00 3.5 0.079 0.78 2.73 8.0 (1) 0.39 0.057 385 0.079 0.78 2.3 1.4 (1) 0.47 0.15 385 0.079 0.78 2.73 8.0 (1) 0.47 0.15 0.079 0.78 2.73 8.0 2.9 (1) 0.47 0.15 0.079 0.97 2.9 1.1 (1) 0.78 0.259 0.079 0.99 2.9 1.1 (1) 0.99 0.60 0.160 0.079 <	030/(12) 37×0.32 (1) 1 030/(12) 37×			37 X	37×0.32 (1)	2.18	3.00	7.0	0.079	2.70	5.3	66
	07×0.102 2 - /(30)	- /(30)		× 70	07×0.102	0.32	0.057	383	0.063	0.78	2.2	5.7
(1) 0.47 0.15 170 0.079 0.99 2.8 1 (1) 0.58 0.25 120 0.079 1.13 3.3 1 (1) 0.76 0.400 63 0.079 1.13 3.3 1 (1) 0.76 0.040 63 0.079 1.26 3.7 1 (1) 0.99 0.60 35 0.079 1.48 4.3 2 (1) 1.49 1.20 150 0.079 1.48 4.3 2 (1) 2.18 3.00 7.5 0.079 1.48 5.9 4 2 0.032 0.067 385 0.079 2.73 8.0 9 2 0.32 0.057 385 0.079 0.78 2.3 2 7 0.39 0.067 259 0.079 0.78 2.3 2 7 0.39 0.067 0.079 0.78 2.3 2 1 7 0.39 0.09 259 0.079 0.87 2.7 2 7 0.67 0.79 0.78 2.7 2.7 2.7 2.7 7 0.67 0.79 0.79 0.78 2.9 1 7 0.79 0.79 0.79 0.87 2.9 1 7 0.79 0.79 0.79 0.99 2.9 1 10 0.76 0.79 0.79 0.99 2.9 1 11 <td< td=""><td>- /(28) 07×0.127 2 - /(28) 07×</td><td>- /(28)</td><td></td><td>× 20</td><td>07×0.127</td><td>0.39</td><td>0.09</td><td>258</td><td>0.079</td><td>0.87</td><td>2.5</td><td>7.0</td></td<>	- /(28) 07×0.127 2 - /(28) 07×	- /(28)		× 20	07×0.127	0.39	0.09	258	0.079	0.87	2.5	7.0
(1) 0.58 0.25 120 0.079 1.13 3.3 1 (1) 0.76 0.40 63 0.079 1.26 3.7 1 (1) 0.99 0.60 35 0.079 1.26 3.7 1 (1) 1.49 1.20 35 0.079 1.26 3.7 1 (1) 1.49 1.20 15 0.079 1.98 5.9 4 2 0.032 0.067 385 0.079 2.73 8.0 9 7 0.32 0.067 385 0.063 0.78 2.3 9 7 0.39 0.09 259 0.079 0.87 2.3 9 7 0.39 0.09 259 0.079 0.87 2.7 9 7 0.39 0.78 0.78 2.3 11 7 0.78 0.78 0.79 0.87 2.7 7 0.78 0.79 0.79 0.37 2.7 7 0.76 0.079 0.79 2.9 1 $1)$ 0.76 0.76 0.99 2.9 1 $1)$ 0.76 0.79 0.79 1.36 2.9 1 7 0.99 0.79 0.79 1.13 3.4 1 $1)$ 0.99 0.60 0.79 1.26 3.9 2.9 1 $1)$ 0.99 0.60 0.79 1.28 0.79 2.9 1 $1)$	001/(26) 19×0.10 (1) 2 001/(26) 19×	001/(26)		19×	19×0.10 (1)	0.47	0.15	170	0.079	0.99	2.8	9.1
(1) 0.76 0.40 63 0.079 1.26 3.7 1 (1) 0.99 0.60 35 0.079 1.48 4.3 2 (1) 1.49 1.20 15 0.079 1.98 5.9 4 (1) 2.18 3.00 7.5 0.079 1.98 5.9 4 7 0.32 0.067 385 0.063 0.78 2.3 9 7 0.39 0.09 259 0.079 0.87 2.3 9 7 0.39 0.09 259 0.079 0.87 2.3 1 7 0.39 0.063 0.079 0.87 2.3 1 7 0.39 0.079 0.079 0.87 2.7 1 1 0.47 0.15 171 0.079 0.87 2.9 1 1 0.76 0.40 64 0.079 1.13 3.4 1 1 0.99 0.60 37 0.079 1.26 3.9 2 1 0.99 0.60 37 0.079 1.26 3.9 2	002/(24) 19×0.12 (1) 2 002/(24) 19×	002/(24)		19×	19×0.12 (1)	0.58	0.25	120	0.079	1.13	3.3	11.4
(1) 0.99 0.60 35 0.079 1.48 4.3 2 (1) 1.49 1.20 15 0.079 1.98 5.9 4 2 2.18 3.00 7.5 0.079 2.73 8.0 9 2 0.32 0.067 385 0.063 0.78 2.3 9 7 0.39 0.09 259 0.079 0.87 2.3 9 7 0.36 0.09 259 0.079 0.87 2.3 1 1 0.47 0.15 171 0.079 0.87 2.7 1 1 0.58 0.25 171 0.079 0.97 2.9 1 1 0.56 0.16 121 0.079 0.97 2.9 1 1 0.76 0.76 0.79 1.13 3.4 1 1 0.99 0.60 37 0.079 1.26 3.9 2 1 0.99 0.60 37 0.079 1.48 4.6 3	004/(22) 19×0.15 (1) 2 004/(22) 19×	004/(22)		19 X	19×0.15 (1)	0.76	0.40	63	0.079	1.26	3.7	17
(1) 1.49 1.20 15 0.079 1.98 5.9 4 (1) 2.18 3.00 7.5 0.079 2.73 8.0 9 2 0.32 0.057 385 0.063 0.78 2.3 9 7 0.39 0.09 259 0.079 0.87 2.7 9 7 0.39 0.09 259 0.079 0.87 2.7 17 (1) 0.47 0.15 171 0.079 0.99 2.9 1 (1) 0.58 0.26 121 0.079 0.99 2.9 1 (1) 0.76 0.40 64 0.079 1.13 3.4 1 (1) 0.99 0.60 37 0.079 1.26 3.9 2 (1) 0.99 0.60 37 0.079 1.48 4.6 3	006/(20) 19×0.20 (1) 2 006/(20) 19:	006/(20)		19:	19×0.20 (1)	0.99	0.60	35	0.079	1.48	4.3	25
(1) 2.18 3.00 7.5 0.079 2.73 8.0 9 2 0.32 0.057 385 0.063 0.78 2.3 9 7 0.39 0.097 385 0.063 0.78 2.3 7 7 0.39 0.09 259 0.079 0.87 2.7 1 (1) 0.47 0.15 171 0.079 0.99 2.9 1 (1) 0.58 0.25 121 0.079 1.13 3.4 1 (1) 0.56 0.40 64 0.079 1.26 3.9 2 (1) 0.99 0.60 37 0.079 1.48 4.6 3	012/(16) 19×0.30 (1) 2 012/(16) 19>	012/(16)		19	19×0.30 (1)	1.49	1.20	15	0.079	1.98	5.9	48
0.32 0.057 385 0.063 0.78 2.3 2.3 (1) 0.39 0.09 259 0.079 0.87 2.7 2.7 (1) 0.47 0.15 171 0.079 0.99 2.9 1 (1) 0.58 0.25 121 0.079 1.13 3.4 1 (1) 0.56 0.40 64 0.079 1.26 3.9 2 (1) 0.39 0.60 37 0.079 1.48 4.6 3	030/(12) 37×0.32 (1) 2 030/(12) 37>	030/(12)		37 >	37×0.32 (1)	2.18	3.00	7.5	0.079	2.73	8.0	95
0.39 0.09 259 0.079 0.87 2.7 2.7 (1) 0.47 0.15 171 0.079 0.99 2.9 1 (1) 0.58 0.25 121 0.079 1.13 3.4 1 (1) 0.76 0.40 64 0.079 1.26 3.9 2 (1) 0.76 0.40 64 0.079 1.26 3.9 2 (1) 0.99 0.60 37 0.079 1.48 4.6 3	- /(30)	- /(30)		× 20	07×0.102	0.32	0.057	385	0.063	0.78	2.3	6.7
(1) 0.47 0.15 171 0.079 0.99 2.9 (1) 0.58 0.25 121 0.079 1.13 3.4 (1) 0.76 0.40 64 0.079 1.26 3.9 (1) 0.99 0.60 37 0.079 1.48 4.6	- /(28) 07×0.127 3 - /(28) 07×	- /(28)		× 20	07×0.127	0.39	0.09	259	0.079	0.87	2.7	9.2
(1) 0.58 0.25 121 0.079 1.13 3.4 (1) 0.76 0.40 64 0.079 1.26 3.9 (1) 0.99 0.60 37 0.079 1.48 4.6	001/(26) 19×0.10 (1) 3 001/(26) 19×	001/(26)		19×	19×0.10 (1)	0.47	0.15	171	0.079	0.99	2.9	12
(1) 0.76 0.40 64 0.079 1.26 3.9 (1) 0.99 0.60 37 0.079 1.48 4.6	002/(24) 19×0.12 (1) 3 002/(24) 19×	002/(24)		19×	19×0.12 (1)	0.58	0.25	121	0.079	1.13	3.4	15
(1) 0.99 0.60 37 0.079 1.48 4.6	004/(22) 19×0.15 (1) 3 004/(22) 19×	004/(22)	•	19×	19×0.15 (1)	0.76	0.40	64	0.079	1.26	3.9	21
	006/(20) 19×0.20 (1) 3 006/(20) 19:	006/(20)		19:	19×0.20 (1)	0.99	0.60	37	0.079	1.48	4.6	33

<u> </u>

ESA/SCC Detail Specification

 \sim

PAGE

-

ISSUE

No. 3901/021

_
5
Z
E
Z
<u>S</u>
9
S
늬
A
2
A
>
Ш
노
1
-
a
÷
щ
置
A
E

щ							1						П						
ISHED WIRE OR CABL CHARACTERISTICS	MAX WEIGHT (kg/km)	8.2	11	14	18	26	40	17	22	32	49	20	26	37	62	22	28	40	65
FINISHED WIRE OR CABLE CHARACTERISTICS	(mm) (mm)	2.5	2.9	3.2	3.7	4.2	4.9	3.4	4.0	4.5	5.4	3.7	4.4	4.9	5.8	3.7	4.4	4.9	5.8
CORE	MAX Ø (mm)	0.78	0.87	0.99	1.13	1.26	1.48	0.99	1.13	1.26	1.48	0.99	1.13	1.26	1.48	0.99	1.13	1.26	1.48
SHIELD	STRAND Ø (mm)	0.063	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079	0.079
TERISTICS	MAX OHMIC RESISTANCE (Ω/km)	386	260	171	122	64	37	172	123	64	37	172	124	65	38	172	124	65	38
CONDUCTOR CHARACTERISTICS	NOM SECT. (mm ²)	0.057	0.09	0.15	0.25	0.40	0.60	0.15	0.25	0.40	09.0	0.15	0.25	0.40	0.60	0.15	0.25	0.40	0.60
CONDUC	MAX Ø (mm)	0.32	0.39	0.47	0.58	0.76	0.99	0.47	0.58	0.76	0.99	0.47	0.58	0.76	0.99	0.47	0.58	0.76	0.99
STRANDING	No. OF STRANDS × DIAMETER (mm)	07×0.102	07×0.127	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)
WIRE	SIZE ISO/(AWG)	- /(30)	- /(28)	001/(26)	002/(24)	004/(22)	006/(20)	001/(26)	002/(24)	004/(22)	006/(20)	001/(26)	002/(24)	004/(22)	006/(20)	001/(26)	002/(24)	004/(22)	006/(20)
	No. OF CORES	4	4	4	4	4	4	5	ŝ	5	5	9	9	9	9	7	7	7	7
DRAIN WIRF	No. OF STRANDS × DIAMETER (mm)	07×0.102	07×0.127	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)	19×0.10 (1)	19×0.12 (1)	19×0.15 (1)	19×0.20 (1)
		- /(30)	- /(28)	001/(26)	002/(24)	004/(22)	006/(20)	001/(26)	002/(24)	004/(22)	006/(20)	001/(26)	002/(24)	004/(22)	006/(20)	001/(26)	002/(24)	004/(22)	006/(20)
	VARIANT No.	24	25	26	27	28	29	8	31	32	33	34	35	36	37	38	ဓ	40	41

NOTES 1. In accordance with ISO 2635. AWG sizes are given for reference.

TABLE 1(b) - MAXIMUM RATINGS

ISSUE 1

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNIT	REMARKS
1	Voltage	VP	600	Vrms	
2	Maximum Current (Note 1)	l _{max}	1.3 1.5 2.5 3.5 5.0 7.5 10 13 23	A	For AWG 30 28 26 24 22 20 18 16 12
3	Operating Temperature Range	T _{amb}	-200 to +200	°C	:
4	Storage Temperature Range	T _{stg}	- 200 to + 200	°C	

<u>NOTES</u>

1. The above specified current will generate a temperature rise of approximately 50°C above ambient temperature in a vacuum environment. Precautions shall be taken to prevent the total temperature of the wire (ambient plus rise) exceeding the continuous operating temperature of the wire.

FIGURE 1 - PARAMETER DERATING INFORMATION

No. 3901/021

FIGURE 2 - PHYSICAL CHARACTERISTICS

Dimensions are given in Table 1(a)

FIGURE 2(a) - FINISHED WIRES

FIGURE 2(b) - SINGLE CABLE WITH SHIELD AND JACKET

FIGURE 2(c) - MULTICORE CABLE WITH SHIELD AND JACKET

2. APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESA/SCC Generic Specification No. 3901, Wires and Cables, Electrical, 600V, Low Frequency.
- (b) ISO 2635, Conductors for General Purpose Aircraft Electrical Cables and Aerospace Applications Dimensions and Characteristics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 and ESA/SCC Generic Specification No. 3901 shall apply.

4. **REQUIREMENTS**

4.1 <u>GENERAL</u>

The complete requirements for procurement of the finished cables specified herein are stated in this specification and ESA/SCC Generic Specification No. 3901. Deviations from the Generic Specification, applicable to this specification only, are listed in Para 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the Appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

- 4.2.1 <u>Deviations from Special In-process Controls</u> None.
- 4.2.2 <u>Deviations from Final Production Tests (Chart II)</u> None.
- 4.2.3 <u>Deviations from Burn-in and Electrical Measurements (Chart III)</u> Not applicable.
- 4.2.4 Deviations from Qualification, Environmental and Endurance Tests (Chart IV)
 - (a) Para. 9.21, Resistance to Fluids: To be modified in accordance with Para. 4.8.11 of this specification.
- 4.2.5 <u>Deviations from Lot Acceptance Tests (Chart V)</u> None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the finished wires and cables specified herein shall be checked; they shall conform to those shown in Table 1(a), Figure 2 and Para 4.4 of this specification (see below for the list of parameters to be checked).

PARAMETER	TABLE 1(a)	FIGURE 2	PARA. 4.4
<u>COMPOSITION</u> Number of conductors Gauge Shielding Jacket	X X X	x	
CONDUCTOR Nature Outer diameter Number of strands Strand diameter Length of lay Silver thickness	X X X		x x x
INSULATION Composition Thickness Concentricity Outer diameter Core identification Colour	x	x	x x x x x
<u>SHIELDING</u> Number of strands Type of shielding Strand diameter Nature Shield strand adhesion Shielding lay Shield coverage	x x	x	x x x x
DRAIN WIRE Nature Outer diameter Number of strands Strand diameter Length of lay Silver thickness	X X X	x	x x x
JACKET Composition Protective Tape Wraps Thickness Overlapping Outer diameter Colour	x	x x x	x x x x

LIST OF PARAMETERS TO BE CHECKED

4.3.2 Weight

The maximum weight of the finished cables specified herein shall be as specified in Table 1(a).

4.4 MATERIALS AND FINISHES

The materials and finishes shall be as specified herein. Where a definite material is not specified, a material which will enable the wires and cables specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Conductor

4.4.1.1 Material Characterisitics

All strands used in the manufacture of the conductors shall be silver-coated, soft or annealed, high strength copper alloy for ISO 004, 006, 012 and 030, AWG 18 and silver-coated, high strength copper alloy for ISO 001 and 002 and AWG 28 to AWG 30 inclusive. On silver-coated strands, the thickness of silver shall be 2.0μ m minimum.

On all copper conductors, any strand shall show a 10% minimum elongation.

For high-strength copper alloy conductors, the tensile characteristics shall be 6% minimum in elongation and 35kg/mm² minimum in tensile strength.

For the determination of the conductor resistance, as mentioned in Para. 9.5 of ESA/SCC Generic Specification No. 3901, the α coefficient for copper alloy is 0.0035.

4.4.1.2 Stranding

The conductors shall be constructed of concentrically laid strands to produce a smooth and uniform conductor of circular cross-section and free from any high strands or other surface irregularities.

The length of lay of the external layer shall not be less than 8, nor more than 16, times the maximum conductor diameter specified in Table 1(a).

4.4.2 Insulation

4.4.2.1 Material

Any insulating material shall be virgin polyimide over expanded PTFE with only those additives that are necessary for processing and pigmentation.

4.4.2.2 Construction

The insulation shall have a uniform cross-section throughout the length of the cables and the conductor shall be evenly centred in the insulation.

The insulation shall consist of 1 wrapped layer of expanded PTFE tape and 2 wrapped layers of polyimide tapes as specified in Figure 2(a).

4.4.3 Shield

4.4.3.1 Material

Shield strands shall meet the requirements for silver-coated, soft or annealed copper outlined in Para. 4.4.1.1 of this specification, but the thickness of silver shall be 2.5µm minimum.

4.4.3.2 Construction

The shield shall be closely and helically wound around the single insulated wire or twisted bundle of insulated wires (core) and provide not less than 92% coverage. The coverage factor K is calculated as follows:-

$$K = \frac{n \times d_{w} \sqrt{(\pi D)^{2} + P^{2}}}{P \pi D} \times 100(\%)$$

where:-

- K = % coverage
- n = number of serving wires
- d_w = shield strand diameter (mm)
- D = diameter of core (mm)
- P = serving pitch (mm)

4.4.4 Drain Wire

Material, construction, stranding as well as size of the drain wire shall be exactly the same as the conductor of the single insulated wire. It shall be placed underneath the served wire shield.

4.4.5 <u>Jacket</u>

All shielded cables shall be provided with jackets of wrapped polyimide tapes as specified in Figures 2(b) and 2(c). The wrapped tapes shall be heat-sealed. The side of the tape of the first layer above the shield, which is not coated with FEP resin, shall be facing the shield.

The jeacket shall have an even wall thicknes of 0.1mm.

4.4.6 Construction of Multicore Cables

Multicore cables shall be constructed by twisting the required number and size of finished wires to form a uniform cable without high strands, bends or other irregularities. Finished wires of only one size shall be used for one cable. The cabling shall be with left-hand lay and the length of lay shall not be less than 12, nor more than 16, times the outside diameter of the unshielded, unjacketed cable. The construction of shielded and jacketed cables is shown in Figures 2(b) and 2(c). Fillers shall not be used in the construction of multicore cables except for the 5- and 6-core cables, where the 5/6 wires shall be twisted around a round, uncoloured filler made of expanded polytetrafluorethylene. The diameter of the filler for the 5/6-core cables shall be 0.7/1.0 times the diameter of the wires used in the cables.

4.4.7 <u>Colour Coding</u>

4.4.7.1 Single and Multicore Cable Colour Coding

The colour coding of all cables shall be according to the following list, if not otherwise specified in the contract.

Number of cores in cable	Colour of respective cores							
2	red	natural						
3	red	natural	yellow					
4	red	natural	yellow	green				
5	red	natural	yellow	green	brown			
6	red	natural	yellow	green	brown	black		
7	red	natural	yellow	green	brown	black	orange	

4.4.7.2 Jacket Colour

The colour of jackets shall normally be the natural colour of the polyimide tapes.

4.5 MARKING

4.5.1 General

The marking of all spools of finished cables delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each spool shall be marked in respect of:-

- (a) The SCC Component Number.
- (b) Characteristics.
- (c) Traceability Information.
- (d) Additional Marking.

4.5.2 The SCC Component Number

Each spool shall bear the SCC Component Number which shall be constituted and marked as follows:-

	<u>390102101</u> ₽
Detail Specification Number	
Type Variant (see Table 1(a))	
Testing Level	

No. 3901/021

4.5.3 Characteristics

The characteristics shall show the length(s) of the finished cable wound on each spool and shall be marked as follows:-

1	<u> </u>	
Length in metres (see Note)]	
Symbol for metres		

NOTES

1. Whenever the length is less than 100 metres, insert a zero in the first block (example: 075 m). If more than one length of finished cable is wound on a spool, the characteristics of each length shall be marked as above.

4.5.4 Traceability Information

Each spool shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.5.5 Additional Marking

Each spool shall bear the Manufacturer's Quality Control Inspector's stamp or initials.

4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature

The parameters to be measured at room temperature are scheduled in Table 2. The measurements shall be performed at T_{amb} = +22 ±3 °C.

4.6.2 Electrical Measurements at High and Low Temperatures

Not applicable.

- 4.6.3 <u>Circuits for Electrical Measurements</u> Not applicable.
- 4.7 <u>BURN-IN TESTS</u> Not applicable.

4.8 ENVIRONMENTAL AND ENDURANCE TESTS

4.8.1 <u>Mechanical Properties of Conductor</u>

As detailed in Para's 4.4.1.1 and 4.4.4 of this Specification.

4.8.2 Accelerated Ageing

Ageing Temperature +230 ± 5 °C.

TABLE A - MANDREL DIAMETERS AND LOADS FOR FINISHED WIRES

Wire Size ISO/(AWG)	Mandrel Diameter (mm)	Weight (kg)
- /(30)	5.0	0.15
- /(28)	6.0	0.25
001/(26)	6.0	0.25
002/(24)	6.0	0.25
004/(22)	6.0	0.40
006/(20)	6.0	0.40
- /(18)	10	0.50
012/(16)	10	0.50
030/(12)	20	1.00

4.8.3 Wrap Test at Ambient Temperature

The mandrel diameters and applied loads for wrap testing of finished wires are given in Table A. The mandrel diameters and applied loads for screened and jacketed cables are given in Table B.

4.8.4 <u>Voltage Test</u>

No particular conditions are applicable.

4.8.5 <u>Shrinkage</u>

The shrinkage temperature shall be +200 ±5 °C

- 4.8.6 <u>Blocking</u> The blocking temperature shall be $+230 \pm 5$ °C.
- 4.8.7 Cold Bend Test

The mandrel diameters and loads shall be as specified in Table C.

TABLE B - MANDREL DIAMETERS AND LOADS FOR SHIELDED AND JACKETED CABLES

Cable Size ISO/(AWG)	Number of Cores	Mandrel Diameter (mm)	Load (kg)
- /(30)	1	10	0.15
- /(28)	1	15	0.25
001/(26)	1	15	0.25
002/(24)	1	15	0.25
004/(22)	1	20	0.50
006/(20)	1	25	0.50
- /(18)	1	30	1.00
012/(16)	1	30	1.00
030/(12)	1	40	1.00
- /(30)	2	20	0.25
- /(28)	2	20	0.50
001/(26)	2	20	0.50
002/(24)	2	25	0.50
004/(22)	2	30	0.80
006/(20)	2	35	0.80
012/(16)	2	50	1.00
030/(12)	2	60	1.00
- /(30)	3	15	0.25
- /(28)	3	20	0.50
001/(26)	3	25	0.75
002/(24)	3	30	0.75
004/(22)	3	30	1.20
006/(20)	3	40	1.20
- /(30)	4	20	0.50
- /(28)	4	25	0.80
001/(26)	4	25	1.00
002/(24)	4	30	1.00
004/(22)	4	35	1.50
006/(20)	4	40	1.50
001/(26)	5	25	1.50
002/(24)	5	30	1.50
004/(22)	5	35	2.00
006/(20)	5	40	2.00
001/(26)	6/7	35	1.50
002/(24)	6/7	30	1.50
004/(22)	6/7	35	2.00
006/(20)	6/7	40	2.00

TABLE C - MANDREL DIAMETERS AND LOADS FOR FINISHED WIRES OR CORES

Wire Size ISO/(AWG)	Mandrel Diameter (mm)	Weight (kg)
- /(30)	5.0	0.15
- /(28)	6.0	0.25
001/(26)	6.0	0.25
002/(24)	6.0	0.25
004/(22)	6.0	0.40
006/(20)	6.0	0.40
- /(18)	10	0.50
012/(16)	10	0.50
030/(12)	20	1.00

4.8.8 Cut-through Resistance

The mean load measured during the required tests shall not be less than the relevant value specified below:-

Wire Size ISO	-	-	001	002	004	006	-	012	030
(AWG)	(30)	(28)	(26)	(24)	(22)	(20)	(18)	(16)	(12)
Cut-through Load (kg)	9.0	11	11	11	25	32	32	35	50

4.8.9 Notch Resistance

The depth of notch shall be 0.04mm.

4.8.10 Flammability

No particular conditions are applicable.

- 4.8.11 <u>Resistance to Fluids</u> Tests (h), (i) and (j) shall not be performed.
- 4.8.12 Surface Resistance

No particular conditions are applicable.

4.8.13 Abrasion Resistance

The weight to be applied to the needle is specified below:-

Wire Size ISO	-	-	001	002	004	006	-	012	030
(AWG)	(30)	(28)	(26)	(24)	(22)	(20)	(18)	(16)	(12)
Scrape Abrasion Load (kg)	350	500	650	750	800	900	900	1050	1200

- 4.8.14 <u>Soldering</u> No particular conditions are applicable.
- 4.8.15 <u>Solderability</u> No particular conditions are applicable.
- 4.8.16 <u>Radiation Resistance</u> No particular conditions are applicable.
- 4.8.17 <u>Overload Resistance</u> No particular conditions are applicable.
- 4.8.18 <u>Long-term Ageing Test</u> The long-term ageing temperature shall be +200°C.
- 4.8.19 <u>Anthony and Brown Test</u> No particular conditions are applicable.

No.	CHARACTERISTICS	SPEC. AND/OR TEST METHOD	TEST CONDITION	LIMITS	UNIT
1	Conductor Resistance	ESA/SCC No. 3901, Section 9	Para 9.5	Table 1(a)	Ω/Km
2	Spark Test	ESA/SCC No. 3901, Section 9	Para 9.6	Insulation : 3.0 Jacket : 1.5	kV
3	Voltage Test	ESA/SCC No. 3901, Section 9	Para 9.7	Para 9.7	kV
4	Insulation Resistance	ESA/SCC No. 3901, Section 9	Para 9.8	Insulation : 750 Jacket : 30	MΩ.km
5	Surface Resistance	ESA/SCC No. 3901, Section 9	Para 9.22	: 125	MΩ.mm

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE

No. 3901/021

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR W.L. GORE & ASSOCIATES (GmbH)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Figure 2	Expanded PTFE tape shall be GORE-TEX ®
Para. 4.4.2.1	Expanded PTFE tape shall be GORE-TEX ®

NOTES 1. GORE-TEX [®] = Registered Trade Mark of W.L. Gore and Associates (GmbH).