

# DOCUMENT CHANGE REQUEST

140 DCR number Originator: S Thacker Changes required for: General Date: 2004/09/10 Date sent: 2004/09/10 Organisation: ESA/ESTEC Status: IMPLEMENTED Title: HCMOS 8-Bit Shift Registers with 3 State Output Registers, based on type 54HC595 Number: 9306/051 Issue: 2 Other documents affected: Page: See attached Markup Paragraph: See attached Markup Original wording: Proposed wording: 1) para 2.3.1, 2.3.2, 2.4, 2.5 Electrical measurements Tables: Correction of IOL & IOH conditions for VOL4, VOL5 & VOH4, VOH5 tests for output QH' by addition of VOL6, VOL7, VOH6, VOH7 - see attached mark-up for details. 2) In addition several editorial corrections have been included as detailed on the mark-up including: a) - para 1.4.2 Component type variants: delete "G8" terminal material & finish. b) - para 2.3.1 & 2.3.2 Electrical measurements Tables: Insert VIL & VIH definitions in timing parameter tests. c) - para 2.3.3 Note 1: expand note to include definition of inputs & outputs not under test. d) - para 2.3.3 Note 6: add "with 0 failures permitted" e) - para 2.3.3 Note 7 replace "clock" with actual inputs tested "SRCLK" & "RCLK". f) - other minor editorial amendments have been included as per the mark-up. Justification: 1) Correction of a technical error in the specification.

2) Editorial changes have been made for the purposes of clarification and consistency of content of this specification to

others in the 54HC and 4000B series of ESCC specifications.

| Attachments:                             |
|------------------------------------------|
| 9306051_DCR_PAGES.pdf, 140att1.pdf, null |
| Modifications:                           |
| N/A                                      |
| Approval signature:                      |
| Jl. Kaile                                |
| Date signed:                             |
| 2004-09-10                               |

Marker Per Der. Sithacker.



Pages 1 to 28

# 8-BIT SHIFT REGISTER WITH 3-STATE OUTPUT REGISTER

# **BASED ON TYPE 54HC595**

ESCC Detail Specification No. 9306/051

| 3       | September 2004 |
|---------|----------------|
| Issue 2 | October 2003   |







#### **LEGAL DISCLAIMER AND COPYRIGHT**

#### 2004

European Space Agency, Copyright © 2063. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

ESCC Detail Specification No. 9306/051

PAGE 3

ISSUE 2

# **DOCUMENTATION CHANGE NOTICE**

(Refer to https://escies.org for ESCC DCR content)

| DCR No. | CHANGE DESCRIPTION                                                             |
|---------|--------------------------------------------------------------------------------|
| 198     | Specification upissued to incorporate editorial and technical changes per DCR. |

per allocated



#### 1. GENERAL

#### 1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

#### 1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 9000.
- (b) MIL-STD-883, Test Methods and Procedures for Microelectronics.

# 1.3 <u>TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS</u>

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

# 1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

#### 1.4.1 The ESCC Component Number

The ESCC Component number shall be constituted as follows:

Example: 930605101F

Detail Specification Reference: 9306051

Component Type Variant Number: 01 (as required)

Total Dose Radiation Level Letter: F (as required)

# 1.4.2 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

| Variant<br>Number | Based on Type | Case | Terminal Material and /or Finish | Weight<br>max g | Total Dose<br>Radiation Level<br>Letter |
|-------------------|---------------|------|----------------------------------|-----------------|-----------------------------------------|
| 01                | 54HC595       | FP ( | G2 <b>m/250</b>                  | 0.7             | F [50kRAD(Si)]                          |
| 02                | 54HC595       | FP   | G4                               | 0.7             | F [50kRAD(Si)]                          |
| 05                | 54HC595       | CCP  | 2                                | 0.6             | F [50kRAD(Si)]                          |
| 10                | 54HC595       | DIP  | G2                               | 2.2             | F [50kRAD(Si)]                          |
| 11                | 54HC595       | DIP  | G4                               | 2.2             | F [50kRAD(Si)]                          |
| 12                | 54HC595       | SO   | G2                               | 0.7             | F [50kRAD(Si)]                          |
| 13                | 54HC595       | so   | G4                               | 0.7             | F [50kRAD(Si)]                          |



The terminal material and/or finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

The total dose radiation level letter shall be as defined in ESCO Basic Specification No. 22900. If an alternative radiation test level is specified in the burchase order the letter shall be changed accordingly.

#### 1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the applicable ESCC Generic Specification.

| Characteristics                                        | Symbols           | Maximum Ratings              | Units | Remarks          |
|--------------------------------------------------------|-------------------|------------------------------|-------|------------------|
| Supply Voltage                                         | V <sub>DD</sub>   | -0.5 to 7                    | V     | Note 1           |
| Input Voltage                                          | V <sub>IN</sub>   | -0.5 to V <sub>DD</sub> +0.5 | V     | Notes 1, 2       |
| Output Voltage                                         | V <sub>OUT</sub>  | -0.5 to V <sub>DD</sub> +0.5 | V     | Notes 1, 3       |
| Device Power Dissipation (Continuous)                  | P <sub>D</sub>    | 420                          | mW    | Note 4           |
| Supply Current                                         | I <sub>DDop</sub> | 70                           | mA    | <u> </u>         |
| Operating Temperature Range                            | T <sub>op</sub>   | -55 to +125                  | °C    | T <sub>amb</sub> |
| Storage Temperature Range                              | T <sub>stg</sub>  | -65 to +150                  | °C    |                  |
| Soldering Temperature<br>For FP, DIP and SO<br>For CCP | T <sub>sol</sub>  | +265<br>+245                 | °C    | Note 5<br>Note 6 |

#### NOTES:

- Device is functional for 2V≤V<sub>DD</sub>≤6V.
- 2. Input current limited to I<sub>IC</sub>=±20mA.
- 3. Output current limited to I<sub>OUT</sub>=±35mA.
- The maximum device dissipation is determined by I<sub>DDop</sub> max (70mA)x6V.
- 5. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same terminal shall not be resoldered until 3 minutes have elapsed.
- Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

#### 1.6 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 2 per ESCC Basic Specification No. 23800 with a Minimum Critical Path Failure Voltage of 2500 Volts.

## 1.7 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

Consolidated Notes are given following the case drawings and dimensions.



### 2. REQUIREMENTS

#### 2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the applicable ESCC Generic Specification. Permitted deviations from the applicable Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

## 2.1.1 <u>Deviations from the Generic Specification</u>

None.

## 2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification.
- (b) The ESCC qualified components symbol (for ESCC qualified components only).
- (c) The ESCC Component Number.
- (d) Traceability information.

# 2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures. Consolidated Notes are given after the tables.

#### 2.3.1 Room Temperature Electrical Measurements

The measurements shall be performed at  $T_{amb}$ =+22 ± 3°C.

| Characteristics   | Symbols | MIL-STD-883 | Test Conditions                                                                                                                                                     | · · | Units |   |
|-------------------|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---|
|                   |         | Test Method | Note 1                                                                                                                                                              | Min | Max   |   |
| Functional Test 1 | -       | 3014        | Verify Truth Table without Load V <sub>IL</sub> =0.3V,V <sub>IH</sub> =1.5V V <sub>DD</sub> =2V,V <sub>SS</sub> =0V t <sub>r</sub> <1µs, Note 2                     | -   | -     | - |
| Functional Test 2 | -       | 3014        | Verify Truth Table without Load V <sub>tL</sub> =0.9V,V <sub>IH</sub> =3.15V V <sub>DD</sub> =4.5V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>r</sub> <500ns Note 2 | -   | -     | - |



|                                  | Characteristics                       | Symbols                                 | MIL-STD-883 | Test Conditions                                                                                                                                                  | Limits |     | Units |
|----------------------------------|---------------------------------------|-----------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------|
|                                  |                                       | e european d'<br>european de la company | Test Method | Note 1                                                                                                                                                           | Min    | Max | 1     |
|                                  | Functional Test 3                     | -                                       | 3014        | Verify Truth Table without Load V <sub>IL</sub> =1.2V,V <sub>IH</sub> =4.2V V <sub>DD</sub> =6V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>f</sub> <400ns Note 2 | -      |     | •     |
|                                  | Quiescent Current                     | I <sub>DD</sub>                         | 3005        | V <sub>IL</sub> =0V,V <sub>IH</sub> =6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V<br>All Outputs Open<br>Note 3                                                 | -      | 400 | nA    |
|                                  | Low Level Input<br>Current            | I <sub>IL</sub>                         | 3009        | V <sub>IN</sub> (Under Test)=0V<br>V <sub>IN</sub> (Remaining<br>Inputs)=6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V                                           | *      | -50 | nA    |
|                                  | High Level Input<br>Current           | I <sub>IH</sub>                         | 3010        | V <sub>IN</sub> (Under Test)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V                                           | -      | 50  | nA    |
|                                  | Low Level Output<br>Voltage 1         | V <sub>OL1</sub>                        | 3007        | V <sub>IL</sub> =0.3V, V <sub>IH</sub> =1.5V,<br>I <sub>OL</sub> =20μA<br>V <sub>DD</sub> =2V, V <sub>SS</sub> =0V                                               | -      | 100 | mV    |
|                                  | Low Level Output<br>Voltage 2         | V <sub>OL2</sub>                        | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =20μA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                            | -      | 100 | mV    |
|                                  | Low Level Output<br>Voltage 3         | V <sub>OL3</sub>                        | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =20μΑ<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                                               |        | 100 | mV    |
| QA, QB, QC, QD<br>QE, QF, QG, QH | Low Level Output<br>Voltage 4,        | V <sub>OL4</sub>                        | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                             | -      | 260 | mV    |
| V                                | Low Level Output<br>Voltage 5,        | V <sub>OL5</sub>                        | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                                              | -      | 260 | mV    |
| VOL6,7                           | High Level Output<br>Voltage 1        | V <sub>OH1</sub>                        | 3006        | V <sub>IL</sub> =0.3V, V <sub>IH</sub> =1.5V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =2V, V <sub>SS</sub> =0V                                              | 1.9    | -   | ٧     |
|                                  | High Level Output<br>Voltage 2        | V <sub>OH2</sub>                        | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                           | 4.4    | _   | V     |
|                                  | High Level Output<br>Voltage 3        | V <sub>OH3</sub>                        | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                                              | 5.9    | -   | V     |
|                                  | High Level Output<br>Voltage 4        | V <sub>OH4</sub>                        | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                            | 3.98   | -   | V     |
| 1                                | Voltage 6,<br>QH'                     | VOL6                                    | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V<br>I <sub>OL</sub> =4mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =OV                                              | _      | 260 | mV    |
| Ĺ                                | Low Level Dutent<br>Voltage 7,<br>CQH | VOL7                                    | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V<br>IOL=5.2mA<br>V <sub>0D=6</sub> V, V <sub>SS</sub> =0V                                                            | _      | 260 | mV    |

| High level Dutput<br>Voltage 6,<br>QH' | YOHE | 3006 | VIL=0.9V, VIN=3.15V<br>IDH= ~4MA<br>VDB= 4.5V, VSS=OV      | 3.98 | _ | 7        |
|----------------------------------------|------|------|------------------------------------------------------------|------|---|----------|
| High Level Output<br>Voltage 7,<br>QH  | VOH7 | 3006 | Vil 21.2V, VIL 2 4.2V<br>IOH = - 8.2MA<br>VDD 26V, JSS 20V | 5.48 | _ | <b>V</b> |

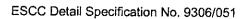
**ESCC** 

ESCC Detail Specification No. 9306/051

PAGE 17

ISSUE 2

QA,QB,QC,QD QE,QF,QG,QH


| Characteristics                                                | Symbols           | MIL-STD-883 | Test Conditions                                                                                                                                   | Lin        | nits  | Units |
|----------------------------------------------------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|
|                                                                |                   | Test Method | Note 1                                                                                                                                            | Min        | Max   |       |
| High Level Output<br>Voltage 5                                 | 3.1.5             | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                              | 5.48       | •     | V     |
| Threshold Voltage<br>N-Channel                                 | V <sub>THN</sub>  | -           | G Input at Ground<br>All Other Inputs:<br>V <sub>IN</sub> =5V<br>V <sub>DD</sub> =5V, I <sub>SS</sub> =-10μA                                      | -0.45      | -1.45 | V     |
| Threshold Voltage<br>P-Channel                                 | V <sub>THP</sub>  | -           | G Input at Ground<br>All Other Inputs:<br>V <sub>IN</sub> =-5V<br>V <sub>SS</sub> =-5V, I <sub>DD</sub> =10μA                                     | 0.45       | 1.35  | ٧     |
| Input Clamp<br>Voltage to V <sub>SS</sub>                      | V <sub>IC1</sub>  | -           | I <sub>IN</sub> (Under Test)=<br>-0.1mA<br>V <sub>DD</sub> =Open, V <sub>SS</sub> =0V<br>All Other Pins Open                                      | -400       | -900  | mV    |
| Input Clamp<br>Voltage to V <sub>DD</sub>                      | V <sub>IC2</sub>  | -           | I <sub>IN</sub> (Under Test)=<br>0.1mA<br>V <sub>DD</sub> =0V, V <sub>SS</sub> =Open<br>All Other Pins Open                                       | 400        | 900   | mV    |
| Output Leakage<br>Current Third<br>State Low Level<br>Applied  | I <sub>OZL</sub>  | 3020        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =0V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V            | -          | -500  | nA    |
| Output Leakage<br>Current Third<br>State High Level<br>Applied | Гоzн              | 3021        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =6V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V            | -          | 500   | nA    |
| Input Capacitance                                              | C <sub>IN</sub>   | 3012        | V <sub>IN</sub> (Not Under<br>Test)=0V<br>V <sub>DD</sub> = V <sub>SS</sub> =0V<br>f = 100 kHz to 1 MHz<br>Note 4                                 | <b>0</b> - | 10    | pF    |
| Propagation Delay<br>Low to High 1,<br>SRCLK to QH'            | t <sub>PLH1</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -          | 32    | ns    |
| Propagation Delay<br>High to Low 1,<br>SRCLK to QH'            | <sup>‡</sup> PHL1 | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -          | 32    | ns    |

\ VIL=04, VIH \$51



| Characteristics                                         |                   |             | Lir                                                                                                                                               | nits     | Units |    |
|---------------------------------------------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----|
|                                                         |                   | Test Method | Note 1                                                                                                                                            | Min      | Max   | 1  |
| Propagation Delay<br>Low to High 2,<br>RCLK to QH       | t <sub>PLH2</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 35    | ns |
| Propagation Delay<br>High to Low 2,<br>RCLK to QH       | t <sub>PHL2</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 35    | ns |
| Propagation Delay<br>High to Low 3<br>SRCLR to QH       | t <sub>PHL3</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 35    | ns |
| Transition Time<br>Low to High 1,<br>QH                 | <sup>†</sup> ⊤LH1 | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 15    | ns |
| Transition Time<br>High to Low 1,<br>QH                 | t <sub>THL1</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 15    | ns |
| Transition Time<br>Low to High 2,<br>QH                 | t <sub>TLH2</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 12    | ns |
| Transition Time<br>High to Low 2,<br>QH                 | t <sub>THL2</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 12    | ns |
| Output Enable Time High Impedance to Low Output G to QA | t <sub>PZL</sub>  | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>=0V<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5             | <b>-</b> | 30    | ns |
| Output Enable Time High Impedance to High Output        | t <sub>PZH</sub>  | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>=0V<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5             | -        | 30    | ns |

QH1)





VIL=01, VIH 45V

ISSUE 2

| Characteristics                                           | Symbols            | MIL-STD-888 | Test Conditions                                                                                                                                   | Lin | Units |     |
|-----------------------------------------------------------|--------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|
|                                                           |                    | Test Method | Note 1                                                                                                                                            | Min | Max   |     |
| Output Disable Time Low Output to High Impedance G to QAS | t <sub>PLZ</sub>   | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth Table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -   | 40    | ns  |
| Output Disable Time High Output to High Impedance         | t <sub>PHZ</sub>   | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth Table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -   | 40    | ns  |
| Maximum Clock<br>Frequency                                | f <sub>CLK</sub> ) | . (         | SRCLK = RCLK =<br>Pulse Generator<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Notes 6, 7                                                     | 30  | -     | MHz |

# 2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

The measurements shall be performed at  $T_{amb}$ =+125 (+0 -5)  $^{o}$ C and  $T_{amb}$ =- 55(+5-0) $^{o}$ C.

| Characteristics            | Symbols         | MIL-STD-883 | Test Conditions                                                                                                                                                     | Lir | nits | Units |
|----------------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
|                            |                 | Test Method | Note 1                                                                                                                                                              | Min | Max  | 1     |
| Functional Test 1          | <u>-</u>        | 3014        | $\begin{tabular}{ll} Verify Truth Table\\ without Load\\ V_{IL}=0.3V,V_{IH}=1.5V\\ V_{DD}=2V,V_{SS}=0V\\ t_r<1\mu s,\ Note\ 2\\ \end{tabular}$                      | -   | -    | -     |
| Functional Test 2          | -               | 3014        | Verify Truth Table without Load V <sub>IL</sub> =0.9V,V <sub>IH</sub> =3.15V V <sub>DD</sub> =4.5V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>f</sub> <500ns Note 2 | -   | -    | _     |
| Functional Test 3          | -               | 3014        | Verify Truth Table without Load $V_{IL}$ =1.2 $V$ , $V_{IH}$ =4.2 $V$ $V_{DD}$ =6 $V$ , $V_{SS}$ =0 $V$ $t_r$ = $t_r$ <400ns Note 2                                 | -   | -    | -     |
| Quiescent Current          | I <sub>DD</sub> | 3005        | V <sub>IL</sub> =0V,V <sub>IH</sub> =6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V<br>All Outputs Open<br>Note 3                                                    | -   | 8    | μΑ    |
| Low Level Input<br>Current | I <sub>IL</sub> | 3009        | V <sub>IN</sub> (Under Test)=0V<br>V <sub>IN</sub> (Remaining<br>Inputs)=6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V                                              | -   | -1   | μА    |

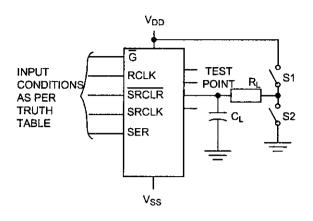


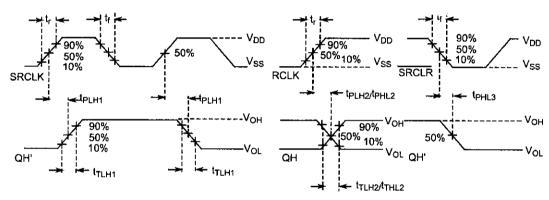
|                                      | Characteristics                              | Symbols          | MIL-STD-883 | Test Conditions                                                                                                        | Limits |      | Units |
|--------------------------------------|----------------------------------------------|------------------|-------------|------------------------------------------------------------------------------------------------------------------------|--------|------|-------|
|                                      |                                              |                  | Test Method | Note 1                                                                                                                 | Min    | Max  |       |
|                                      | High Level Input<br>Current                  | ħн               | 3010        | V <sub>IN</sub> (Under Test)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V | -      | 1    | μА    |
|                                      | Low Level Output<br>Voltage 1                | V <sub>OL1</sub> | 3007        | $V_{IL}$ =0.3V, $V_{IH}$ =1.5V, $I_{OL}$ =20 $\mu$ A $V_{DD}$ =2V, $V_{SS}$ =0V                                        | -      | 100  | mV    |
|                                      | Low Level Output<br>Voltage 2                | V <sub>OL2</sub> | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =20μΑ<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V  | -      | 100  | mV    |
| QA, &&, QC, &D                       | Low Level Output<br>Voltage 3                | V <sub>OL3</sub> | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =20µA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V     | 1      | 100  | mV    |
| QE at ac ah                          | Low Level Output<br>Voltage 4,               | V <sub>OL4</sub> | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V   | 1      | 400  | mV    |
|                                      | Low Level Output<br>Voltage 5,               | V <sub>OL5</sub> | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V    | -      | 400  | mV    |
| Vole, Volt ->                        | High Level Output<br>Voltage 1               | V <sub>OH1</sub> | 3006        | V <sub>IL</sub> =0.3V, V <sub>IH</sub> =1.5V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =2V, V <sub>SS</sub> =0V    | 1.9    | -    | V     |
|                                      | High Level Output<br>Voltage 2               | V <sub>OH2</sub> | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V | 4.4    | -    | V     |
| QA, QB, QC, QD                       | High Level Output<br>Voltage 3               | V <sub>ОН3</sub> | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V    | 5.9    | -    | V     |
| QE,QF,QG,QH                          | High Level Output<br>Voltage 4,              | V <sub>OH4</sub> | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V  | 3.7    | -    | V     |
|                                      | High Level Output<br>Voltage 5,              | V <sub>OH5</sub> | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V   | 5.2    | -    | V     |
| VOH6, VOH7 as per paye 17 with limit | Input Clamp<br>Voltage (to V <sub>SS</sub> ) | V <sub>IC1</sub> | -           | I <sub>IN</sub> (Under Test)=<br>-0.1mA<br>V <sub>DD</sub> =Open, V <sub>SS</sub> =0V<br>All Other Pins Open           | -0.1   | -1.2 | V     |
| Vou6 = 3.7V<br>Vou7 = 5.2V           | Input Clamp<br>Voltage (to V <sub>DD</sub> ) | V <sub>IC2</sub> | -           | I <sub>IN</sub> (Under Test)=<br>0.1mA<br>V <sub>DD</sub> =0V, V <sub>SS</sub> =Open<br>All Other Pins Open            | 0.1    | 1.2  | V     |

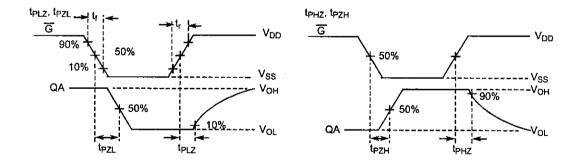


| Characteristics                                                | Symbols          | MIL-STD-883 |                                                                                                                                        |     | nits | Units |
|----------------------------------------------------------------|------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
|                                                                |                  | Test Method | d Note 1                                                                                                                               | Min | Max  |       |
| Output Leakage<br>Current Third<br>State Low Level<br>Applied  | l <sub>OZL</sub> | 3020        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =0V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V | -   | -10  | μА    |
| Output Leakage<br>Current Third<br>State High Level<br>Applied | Гохн             | 3021        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =6V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V | -   | 10   | μА    |

Notes to Electrical Measurement Tables outputs not under test show the open.


- 2.3.3
  - Unless otherwise specified all inputs and outputs shall be tested for each characteristic, ) Functional tests shall be performed with f = 10 kHz (min). The Maximum time to output comparator strobe=30µs.
  - Quiescent Current shall be tested using the following input conditions:
    - (a) All inputs = V<sub>II</sub>
    - (b)  $\overline{G} = V_{IL}$ ;  $\overline{SRCLR} = SER = V_{IH}$ ; SRCLK = RCLK = 9 low to high transitions to configure the outputs to a high level.
  - Guaranteed but not tested.
  - Measurements shall be performed as a go-no-go test on a 100% basis. Read and record measurements shall be performed on a sample of 5 components.


The pulse generator shall have the following characteristics:


 $V_{GEN}$  = 0 to  $V_{DD}$ ; f = 1 MHz minimum;  $t_r$  and  $t_f \le 6$  ns (10% to 90%); duty cycle = 50%;  $Z_{out}$  =  $50\Omega$ Output load capacitance C<sub>L</sub> = 50pF ± 5% including scope probe, wiring and stray capacitance without component in the test fixture and output load resistance  $R_L$  = 1k $\Omega$  ± 5%. Propagation delay and transition time shall be measured as follows:

| PARAMETER                                                                   | $R_{L}$ | CL   | S1     | S2     |
|-----------------------------------------------------------------------------|---------|------|--------|--------|
| t <sub>PZH</sub>                                                            | 1 kΩ    | 50pF | OPEN   | CLOSED |
| t <sub>PZL</sub>                                                            |         |      | CLOSED | OPEN   |
| t <sub>PHZ</sub>                                                            | 1 kΩ    | 50pF | OPEN   | CLOSED |
| t <sub>PLZ</sub>                                                            |         |      | CLOSED | OPEN   |
| t <sub>PHL</sub> ,t <sub>PLH</sub> ,<br>t <sub>THL</sub> , t <sub>TLH</sub> | -       | 50pF | OPEN   | OPEN   |









- 6. Read and record measurements shall be made on a sample of 5 components, with O failurs permitted.
- 7. A pulse, having the following conditions, shall be applied to the cleck inputs:  $V_P = 0V$  to  $V_{DD}$  We.

Maximum Clock frequency (CSK) requirement shall be considered as met if proper output state changes occur with the pulse repetition rate set to that given in the "Limits" column.

Limits



## 2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T<sub>amb</sub> =+22±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Electrical Measurements at Room Temperature, Electrical Measurements.

The drift values ( $\Delta$ ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

| Characteristics             | Symbols          |            | Limits |       | Units |
|-----------------------------|------------------|------------|--------|-------|-------|
|                             |                  | Drift      | Abs    | olute |       |
|                             |                  | Value<br>Δ | Min    | Max   |       |
| Quiescent Current           | I <sub>DD</sub>  | ±120       | -      | 400   | nA    |
| Low Level Input Current     | I <sub>IL</sub>  | ±20        | -      | -50   | nA    |
| High Level Input Current    | I <sub>IH</sub>  | ±20        | -      | 50    | пA    |
| Low Level Output Voltage 4  | V <sub>OL4</sub> | ±26        | -      | 260   | mV    |
| High Level Output Voltage 4 | V <sub>OH4</sub> | ±0.2       | 3.98   | -     | V     |
| Threshold Voltage N-Channel | V <sub>THN</sub> | ±0.3       | -0.45  | -1.45 | V     |
| Threshold Voltage P-Channel | V <sub>THP</sub> | ±0.3       | 0.45   | 1.35  | V     |

, V<sub>он</sub>6

# NOTES:

Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

## 2.5 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at  $T_{amb}$  =+22 $\pm$ 3°C.

The test methods and test conditions shall be as per the corresponding test defined in Electrical Measurements at Room Temperature, Electrical Measurements.

The drift values ( $\Delta$ ) shall not be exceeded for each characteristic where specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

| LowLevel Output Volkage 6   | Vole             | ±26  | _    | 260 | m۷       |
|-----------------------------|------------------|------|------|-----|----------|
| High Level Output Voltage 6 | V <sub>OH6</sub> | ±0.2 | 3.98 | -   | <b>V</b> |



| Characteristics                                        | Symbols          |                | Limits | : :   | Units |
|--------------------------------------------------------|------------------|----------------|--------|-------|-------|
|                                                        |                  | Drift<br>Value | Abs    | olute |       |
|                                                        |                  | Δ              | Min    | Max   |       |
| Functional Test 1                                      | -                | -              | -      | -     | -     |
| Functional Test 2                                      |                  | -              | -      | -     | -     |
| Functional Test 3                                      | -                | -              | -      | -     | -     |
| Quiescent Current                                      | I <sub>DD</sub>  | ±120           | -      | 400   | nA    |
| Low Level Input Current                                | I <sub>IL</sub>  | ±20            | -      | -50   | nA    |
| High Level Input Current                               | I <sub>IH</sub>  | ±20            | -      | 50    | nA    |
| Low Level Output Voltage 4                             | V <sub>OL4</sub> | ±26            | -      | 260   | mV    |
| Low Level Output Voltage 5                             | $V_{OL5}$        | ±26            | -      | 260   | mV    |
| High Level Output Voltage 4                            | V <sub>OH4</sub> | ±0.2           | 3.98   | -     | V     |
| High Level Output Voltage 5                            | V <sub>OH5</sub> | ±0.2           | 5.48   | -     | V     |
| Threshold Voltage N-Channel                            | V <sub>THN</sub> | ±0.3           | -0.45  | -1.45 | V     |
| Threshold Voltage P-Channel                            | V <sub>THP</sub> | ±0.3           | 0.45   | 1.35  | V     |
| Output Leakage Current Third State, Low Level Applied  | lozL             | ±200           | -      | -500  | nA    |
| Output Leakage Current Third State, High Level Applied | l <sub>ozh</sub> | ±200           | -      | 500   | nA    |

VOL6, VOL7 →

# NOTES:

Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

The drift values ( $\Delta$ ) are applicable to the Operating Life test only.

| Law Level Dutput Voltage 6   | VOLG | ±26  | _    | 260 | m٧ |
|------------------------------|------|------|------|-----|----|
| Low Level Ontonk Voltage 7   | Vol7 | ±26  | _    | 260 | mV |
| High Level Onkent Voltrage 6 | Vous | ±0.2 | 3.98 | -   | ٧  |
| High Lovel Output Voltage 7  | Vou7 | ±0.2 | 5.48 | 1   | V  |



# 2.6 <u>HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS</u>

# 2.6.1 N-Channel HTRB

| Characteristics                             | Symbols          | Test Conditions         | Units |
|---------------------------------------------|------------------|-------------------------|-------|
| Ambient Temperature                         | T <sub>amb</sub> | +125 (+0 -5)            | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub> | Open or V <sub>SS</sub> | ·v    |
| Inputs SRCLR, SRCLK, RCLK, G, SER           | V <sub>IN</sub>  | V <sub>SS</sub>         | V     |
| Positive Supply Voltage                     | V <sub>DD</sub>  | 6 (+0 -0.5)             | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>  | 0                       | V     |
| Duration                                    | t ·              | 72                      | Hours |

## NOTES:

- 1. Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.
- 2. Output Load =  $1k\Omega$  min to  $10k\Omega$  max.

# 2.6.2 P-Channel HTRB

| Characteristics                             | Symbols          | Test Conditions         | Units |
|---------------------------------------------|------------------|-------------------------|-------|
| Ambient Temperature                         | T <sub>amb</sub> | +125 (+0 -5)            | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub> | Open or V <sub>DD</sub> | ·V    |
| Inputs SRCLR, SRCLK, RCLK, G, SER           | V <sub>IN</sub>  | V <sub>DD</sub>         | V     |
| Positive Supply Voltage                     | V <sub>DD</sub>  | 6 (+0 -0.5)             | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>  | 0                       | V     |
| Duration                                    | t                | 72                      | Hours |

# **NOTES:**

- 1. Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.
- 2. Output Load =  $1k\Omega$  min to  $10k\Omega$  max.



# 2.7 POWER BURN-IN CONDITIONS

| Characteristics                             | Symbols                                | Test Conditions                                                                         | Units |
|---------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|-------|
| Ambient Temperature                         | T <sub>amb</sub>                       | +125 (+0 -5)                                                                            | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub>                       | V <sub>DD</sub>                                                                         | V     |
| Inputs SRCLR, SER                           | V <sub>IN</sub>                        | V <sub>DD</sub>                                                                         | V     |
| Inputs SRCLK, RCLK                          | V <sub>IN</sub>                        | V <sub>GEN1</sub>                                                                       | V     |
| Input G                                     | V <sub>IN</sub>                        | V <sub>GEN2</sub>                                                                       | V     |
| Pulse Voltage                               | V <sub>GEN</sub>                       | 0V to V <sub>DD</sub>                                                                   | V     |
| Pulse Frequency Square Wave                 | f <sub>GEN1</sub><br>f <sub>GEN2</sub> | 100k ± 10%<br>50k ± 10%<br>50 ± 15% Duty Cycle<br>t <sub>r</sub> =t <sub>f</sub> ≤400ns | Hz    |
| Positive Supply Voltage                     | V <sub>DD</sub>                        | 6 (+0 -0.5)                                                                             | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>                        | 0                                                                                       | V     |

#### NOTES:

- 1. Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.
- 2. Output Load =  $1k\Omega$  min to  $10k\Omega$  max.

| 2.8 | OPERATING LIFE CONDITIONS                              |
|-----|--------------------------------------------------------|
|     | The conditions shall be as specified for power burn-in |
|     |                                                        |

## 2.9 TOTAL DOSE RADIATION TESTING

2.9.1 Bias Conditions and Total Dose Level for Total Dose Radiation Testing

Continuous bias shall be applied during irradiation testing as specified below.

The total dose level applied shall be as specified in the component type variant information herein or in the purchase order.



| Characteristics                             | Symbols          | Test Conditions | Units |
|---------------------------------------------|------------------|-----------------|-------|
| Ambient Temperature                         | T <sub>amb</sub> | + 22 ± 3        | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub> | Open            | ( 'V  |
| Inputs SRCLR, G                             | V <sub>IN</sub>  | V <sub>SS</sub> | V     |
| Inputs SRCLK, RCLK, SER                     | V <sub>IN</sub>  | $V_{DD}$        | V     |
| Positive Supply Voltage                     | V <sub>DD</sub>  | 6 ± 0.3         | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>  | 0               | V     |

#### NOTES:

## 2.9.2 <u>Electrical Measurements for Total Dose Radiation Testing</u>

Prior to irradiation testing the devices shall have successfully met Room Temperature Electrical Measurements specified herein.

Unless otherwise stated the measurements shall be performed at  $T_{amb}$  = +22 ± 3 °C. The test methods and test conditions shall be as per the corresponding test defined in Electrical Measurements at Room Temperature, Electrical Measurements.

The parameters to be measured during and on completion of irradiation testing are shown below.

Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

| Characteristics             | Symbols          |             | Units |          |    |
|-----------------------------|------------------|-------------|-------|----------|----|
|                             |                  | Drift       | Abs   | Absolute |    |
|                             |                  | Values<br>Δ | Min   | Max      |    |
| Quiescent Current           | I <sub>DD</sub>  | -           | -     | 40       | μΑ |
| Threshold Voltage N-Channel | V <sub>THN</sub> | ±0.6        | -0.4  | -1.5     | V  |
| Threshold Voltage P-Channel | V <sub>THP</sub> | ±0.6        | 0.4   | 1.4      | V  |

<sup>1.</sup> Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.



# APPENDIX 'A'

# AGREED DEVIATIONS FOR STMICROELECTRONICS (F)

| ITEMS AFFECTED                                                       | DESCRIPTION OF DEVIATIONS                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deviations from<br>Screening Tests - Chart<br>F3                     | External Visual Inspection: The criteria applicable to chip out are those described in MIL-STD-883, Test Method 2009, Paras 3.3.6(b) and 3.3.7(a).                                                                                                                 |
|                                                                      | High Temperature Reverse Bias Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.                                                                                                                                                          |
|                                                                      | Power Burn-in test is performed using STMicroelectronics Specification Ref: 0019255.                                                                                                                                                                               |
| Deviations from<br>Qualification and<br>Periodic Tests - Chart       | External Visual Inspection: The criteria applicable to chip out are those described in MIL-STD-883, Test Method 2009, Paras 3.3.6(b) and 3.3.7(a).                                                                                                                 |
| F4                                                                   | Operating Life: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.                                                                                                                                                                                 |
| Deviations from Electrical Measuremente et High and Low Temperatures | Glectrical Measurements at High and Low Temperatures may be considered guaranteed but not tested if successful pilot lot testing has been performed on the wafer lot which includes High and Low Temperature Electrical Measurements per the detail specification. |
| Electrical                                                           | Woods of the detail specification.                                                                                                                                                                                                                                 |
| Measurene                                                            | A summary of the pilot lot testing shall be provided if required by the Burchase order.                                                                                                                                                                            |
| Deviations from Room<br>Temperature Electrical<br>Measurements       | All AC characteristics (Capacitance and Timings) may be considered guaranteed but not tested if successful pilot lot testing has been performed on the wafer lot which includes AC characteristic measurements per the detail specification.                       |
|                                                                      | A summary of the pilot lot testing shall be provided if required by the burchase order.                                                                                                                                                                            |

Marker Per Der. Sithacker.



Pages 1 to 28

# 8-BIT SHIFT REGISTER WITH 3-STATE OUTPUT REGISTER

# **BASED ON TYPE 54HC595**

ESCC Detail Specification No. 9306/051

| 3       | September 2004 |
|---------|----------------|
| Issue 2 | October 2003   |







#### **LEGAL DISCLAIMER AND COPYRIGHT**

#### 2004

European Space Agency, Copyright © 2063. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

ESCC Detail Specification No. 9306/051

PAGE 3

ISSUE 2

# **DOCUMENTATION CHANGE NOTICE**

(Refer to https://escies.org for ESCC DCR content)

| DCR No. | CHANGE DESCRIPTION                                                             |
|---------|--------------------------------------------------------------------------------|
| 198     | Specification upissued to incorporate editorial and technical changes per DCR. |

per allocated



#### 1. GENERAL

#### 1.1 SCOPE

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

#### 1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

- (a) ESCC Generic Specification No. 9000.
- (b) MIL-STD-883, Test Methods and Procedures for Microelectronics.

# 1.3 <u>TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS</u>

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

# 1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

#### 1.4.1 The ESCC Component Number

The ESCC Component number shall be constituted as follows:

Example: 930605101F

Detail Specification Reference: 9306051

Component Type Variant Number: 01 (as required)

Total Dose Radiation Level Letter: F (as required)

# 1.4.2 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

| Variant<br>Number | Based on Type | Case | Terminal Material and /or Finish | Weight<br>max g | Total Dose<br>Radiation Level<br>Letter |
|-------------------|---------------|------|----------------------------------|-----------------|-----------------------------------------|
| 01                | 54HC595       | FP ( | G2 <b>m/250</b>                  | 0.7             | F [50kRAD(Si)]                          |
| 02                | 54HC595       | FP   | G4                               | 0.7             | F [50kRAD(Si)]                          |
| 05                | 54HC595       | CCP  | 2                                | 0.6             | F [50kRAD(Si)]                          |
| 10                | 54HC595       | DIP  | G2                               | 2.2             | F [50kRAD(Si)]                          |
| 11                | 54HC595       | DIP  | G4                               | 2.2             | F [50kRAD(Si)]                          |
| 12                | 54HC595       | SO   | G2                               | 0.7             | F [50kRAD(Si)]                          |
| 13                | 54HC595       | so   | G4                               | 0.7             | F [50kRAD(Si)]                          |



The terminal material and/or finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

The total dose radiation level letter shall be as defined in ESCO Basic Specification No. 22900. If an alternative radiation test level is specified in the burchase order the letter shall be changed accordingly.

#### 1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the applicable ESCC Generic Specification.

| Characteristics                                        | Symbols           | Maximum Ratings              | Units | Remarks          |
|--------------------------------------------------------|-------------------|------------------------------|-------|------------------|
| Supply Voltage                                         | V <sub>DD</sub>   | -0.5 to 7                    | V     | Note 1           |
| Input Voltage                                          | V <sub>IN</sub>   | -0.5 to V <sub>DD</sub> +0.5 | V     | Notes 1, 2       |
| Output Voltage                                         | V <sub>OUT</sub>  | -0.5 to V <sub>DD</sub> +0.5 | V     | Notes 1, 3       |
| Device Power Dissipation (Continuous)                  | P <sub>D</sub>    | 420                          | mW    | Note 4           |
| Supply Current                                         | I <sub>DDop</sub> | 70                           | mA    | <u> </u>         |
| Operating Temperature Range                            | T <sub>op</sub>   | -55 to +125                  | °C    | T <sub>amb</sub> |
| Storage Temperature Range                              | T <sub>stg</sub>  | -65 to +150                  | °C    |                  |
| Soldering Temperature<br>For FP, DIP and SO<br>For CCP | T <sub>sol</sub>  | +265<br>+245                 | °C    | Note 5<br>Note 6 |

#### NOTES:

- Device is functional for 2V≤V<sub>DD</sub>≤6V.
- 2. Input current limited to I<sub>IC</sub>=±20mA.
- 3. Output current limited to I<sub>OUT</sub>=±35mA.
- The maximum device dissipation is determined by I<sub>DDop</sub> max (70mA)x6V.
- 5. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same terminal shall not be resoldered until 3 minutes have elapsed.
- Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

#### 1.6 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 2 per ESCC Basic Specification No. 23800 with a Minimum Critical Path Failure Voltage of 2500 Volts.

## 1.7 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

Consolidated Notes are given following the case drawings and dimensions.



### 2. REQUIREMENTS

#### 2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the applicable ESCC Generic Specification. Permitted deviations from the applicable Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

## 2.1.1 <u>Deviations from the Generic Specification</u>

None.

## 2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification.
- (b) The ESCC qualified components symbol (for ESCC qualified components only).
- (c) The ESCC Component Number.
- (d) Traceability information.

# 2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures. Consolidated Notes are given after the tables.

#### 2.3.1 Room Temperature Electrical Measurements

The measurements shall be performed at  $T_{amb}$ =+22 ± 3°C.

| Characteristics   | Symbols MIL-STD-883 | Test Conditions | Limits                                                                                                                                                              |     | Units |   |
|-------------------|---------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---|
|                   |                     | Test Method     | Note 1                                                                                                                                                              | Min | Max   |   |
| Functional Test 1 | -                   | 3014            | Verify Truth Table without Load V <sub>IL</sub> =0.3V,V <sub>IH</sub> =1.5V V <sub>DD</sub> =2V,V <sub>SS</sub> =0V t <sub>r</sub> <1µs, Note 2                     | -   | -     | - |
| Functional Test 2 | -                   | 3014            | Verify Truth Table without Load V <sub>tL</sub> =0.9V,V <sub>IH</sub> =3.15V V <sub>DD</sub> =4.5V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>r</sub> <500ns Note 2 | -   | -     | - |



|                                  | Characteristics                       |                                         |             | Test Conditions                                                                                                                                                  | Limits |     | Units |
|----------------------------------|---------------------------------------|-----------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------|
|                                  |                                       | e european d'<br>european de la company | Test Method | Note 1                                                                                                                                                           | Min    | Max | 1     |
|                                  | Functional Test 3                     | -                                       | 3014        | Verify Truth Table without Load V <sub>IL</sub> =1.2V,V <sub>IH</sub> =4.2V V <sub>DD</sub> =6V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>f</sub> <400ns Note 2 |        |     | •     |
|                                  | Quiescent Current                     | I <sub>DD</sub>                         | 3005        | V <sub>IL</sub> =0V,V <sub>IH</sub> =6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V<br>All Outputs Open<br>Note 3                                                 | -      | 400 | nA    |
|                                  | Low Level Input<br>Current            | I <sub>IL</sub>                         | 3009        | V <sub>IN</sub> (Under Test)=0V<br>V <sub>IN</sub> (Remaining<br>Inputs)=6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V                                           | *      | -50 | nA    |
|                                  | High Level Input<br>Current           | I <sub>IH</sub>                         | 3010        | V <sub>IN</sub> (Under Test)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V                                           | -      | 50  | nA    |
|                                  | Low Level Output<br>Voltage 1         | V <sub>OL1</sub>                        | 3007        | V <sub>IL</sub> =0.3V, V <sub>IH</sub> =1.5V,<br>I <sub>OL</sub> =20μA<br>V <sub>DD</sub> =2V, V <sub>SS</sub> =0V                                               | -      | 100 | mV    |
|                                  | Low Level Output<br>Voltage 2         | V <sub>OL2</sub>                        | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =20μA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                            | -      | 100 | mV    |
|                                  | Low Level Output<br>Voltage 3         | V <sub>OL3</sub>                        | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =20μΑ<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                                               |        | 100 | mV    |
| QA, QB, QC, QD<br>QE, QF, QG, QH | Low Level Output<br>Voltage 4,        | V <sub>OL4</sub>                        | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                             | -      | 260 | mV    |
| V                                | Low Level Output<br>Voltage 5,        | V <sub>OL5</sub>                        | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                                              | -      | 260 | mV    |
| VOL6,7                           | High Level Output<br>Voltage 1        | V <sub>OH1</sub>                        | 3006        | V <sub>IL</sub> =0.3V, V <sub>IH</sub> =1.5V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =2V, V <sub>SS</sub> =0V                                              | 1.9    | -   | ٧     |
|                                  | High Level Output<br>Voltage 2        | V <sub>OH2</sub>                        | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                           | 4.4    | _   | V     |
|                                  | High Level Output<br>Voltage 3        | V <sub>OH3</sub>                        | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                                              | 5.9    | -   | V     |
|                                  | High Level Output<br>Voltage 4        | V <sub>OH4</sub>                        | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V                                            | 3.98   | -   | V     |
| 1                                | Voltage 6,<br>QH'                     | VOL6                                    | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V<br>I <sub>OL</sub> =4mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =OV                                              | _      | 260 | mV    |
| Ĺ                                | Low Level Dutent<br>Voltage 7,<br>CQH | VOL7                                    | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V<br>IOL=5.2mA<br>V <sub>0D=6</sub> V, V <sub>SS</sub> =0V                                                            | _      | 260 | mV    |

| High Level Dutput<br>Voltage 6,<br>QH' | NOHP | એ૦૦૬ | VIL=0.9V, VIH=3-15V<br>IOH=-4MA<br>VDB=4.5V, VSS=OV | 3.98 | _ | 7        |
|----------------------------------------|------|------|-----------------------------------------------------|------|---|----------|
| High Level Output<br>Voltage 7,<br>QH  | VOH7 | 3006 | VL=1.2V, VIL=4.2V<br>TOH=-6.2MA<br>VDD=6V, VSS=OV   | 5.48 | _ | <b>V</b> |

ESCC

ESCC Detail Specification No. 9306/051

PAGE 17

ISSUE 2

QA,QB,QC,QD QE,QF,QC,QH

| Characteristics                                                | Symbols MIL-STD-883 |             | Test Conditions                                                                                                                                   | Lir   | Units |    |
|----------------------------------------------------------------|---------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|
|                                                                |                     | Test Method | Note 1                                                                                                                                            | Min   | Max   |    |
| High Level Output<br>Voltage 5                                 | V <sub>ОН5</sub> ,  | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V                              | 5.48  | -     | V  |
| Threshold Voltage<br>N-Channel                                 | V <sub>THN</sub>    | •           | G Input at Ground<br>All Other Inputs:<br>V <sub>IN</sub> =5V<br>V <sub>DD</sub> =5V, I <sub>SS</sub> =-10μA                                      | -0.45 | -1.45 | V  |
| Threshold Voltage<br>P-Channel                                 | V <sub>THP</sub>    | -           | G Input at Ground<br>All Other Inputs:<br>V <sub>IN</sub> =-5V<br>V <sub>SS</sub> =-5V, I <sub>DD</sub> =10μA                                     | 0.45  | 1.35  | ٧  |
| Input Clamp<br>Voltage to V <sub>SS</sub>                      | V <sub>IC1</sub>    | -           | I <sub>IN</sub> (Under Test)=<br>-0.1mA<br>V <sub>DD</sub> =Open, V <sub>SS</sub> =0V<br>All Other Pins Open                                      | -400  | -900  | mV |
| Input Clamp<br>Voltage ≹to V <sub>DD</sub> }                   | V <sub>IC2</sub>    | -           | I <sub>IN</sub> (Under Test)=<br>0.1mA<br>V <sub>DD</sub> =0V, V <sub>SS</sub> =Open<br>All Other Pins Open                                       | 400   | 900   | mV |
| Output Leakage<br>Current Third<br>State Low Level<br>Applied  | l <sub>OZL</sub>    | 3020        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =0V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V            | -     | -500  | nA |
| Output Leakage<br>Current Third<br>State High Level<br>Applied | l <sub>OZH</sub>    | 3021        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =6V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V            | -     | 500   | nA |
| Input Capacitance                                              | C <sub>IN</sub>     | 3012        | V <sub>IN</sub> (Not Under<br>Test)=0V<br>V <sub>DD</sub> = V <sub>SS</sub> =0V<br>f = 100 kHz to 1 MHz<br>Note 4                                 | -     | 10    | pF |
| Propagation Delay<br>Low to High 1,<br>SRCLK to QH'            | <sup>t</sup> PLH1   | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -     | 32    | ns |
| Propagation Delay<br>High to Low 1,<br>SRCLK to QH'            | t <sub>PHL1</sub>   | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -     | 32    | ns |

( VIL=OV, VIN=5V



| Characteristics                                         | Symbols           | MIL-STD-883 | Test Conditions                                                                                                                                   | Limits |     | Units |
|---------------------------------------------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------|
|                                                         |                   | Test Method | Note 1                                                                                                                                            | Min    | Max |       |
| Propagation Delay<br>Low to High 2,<br>RCLK to QH       | t <sub>PLH2</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -      | 35  | ns    |
| Propagation Delay<br>High to Low 2,<br>RCLK to QH       | t <sub>PHL2</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | •      | 35  | ns    |
| Propagation Delay<br>High to Low 3<br>SRCLR to QH       | t <sub>PHL3</sub> | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | _      | 35  | ns    |
| Transition Time<br>Low to High 1,<br>QH                 | t <sub>TLH1</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -      | 15  | ns    |
| Transition Time<br>High to Low 1,<br>QH                 | t <sub>THL1</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -      | 15  | ns    |
| Transition Time<br>Low to High 2,<br>QH                 | t <sub>TLH2</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -      | 12  | ns    |
| Transition Time<br>High to Low 2,<br>QH                 | t <sub>THL2</sub> | 3004        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -      | 12  | ns    |
| Output Enable Time High Impedance to Low Output G to QA | t <sub>PZL</sub>  | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>=0V<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5             | 1      | 30  | ns    |
| Output Enable Time High Impedance to High Output        | <sup>t</sup> PZH  | 3003        | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>=0V<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5             | -      | 30  | ns    |

(RH1)

VIL=01, VIH=5V

| Characteristics                                          | Symbols MIL-STD-888 |            | 1   | Test Conditions                                                                                                                                   | Lin      | Units |     |
|----------------------------------------------------------|---------------------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----|
|                                                          |                     | Test Metho | d   | Note 1                                                                                                                                            | Min      | Max   | 1   |
| Output Disable Time Low Output to High Impedance G to QA | t <sub>PLZ</sub>    | 3003       |     | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth Table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | -        | 40    | ns  |
| Output Disable Time High Output to High Impedance G to A | t <sub>PHZ</sub>    | 3003       | بر  | V <sub>IN</sub> =Pulse Generator<br>V <sub>IN</sub> (Remaining Inputs)<br>per Truth Table<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Note 5 | <u>-</u> | 40    | ns  |
| Maximum Clock<br>Frequency                               | f <sub>CLK</sub> )  | - (        | ~~; | SRCLK = RCLK =<br>Pulse Generator<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V<br>Notes 6, 7                                                     | 30       |       | MHz |

# 2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

The measurements shall be performed at  $T_{amb}$ =+125 (+0 -5)  $^{o}$ C and  $T_{amb}$ =- 55(+5-0) $^{o}$ C.

| Characteristics            |                 |             |                                                                                                                                                                     | Lin | nits | Units |
|----------------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
|                            |                 | Test Method | Note 1                                                                                                                                                              | Min | Max  | 1     |
| Functional Test 1          | -               | 3014        | Verify Truth Table without Load V <sub>IL</sub> =0.3V,V <sub>IH</sub> =1.5V V <sub>DD</sub> =2V,V <sub>SS</sub> =0V t <sub>r</sub> <1μs, Note 2                     | -   | **   | -     |
| Functional Test 2          | -               | 3014        | Verify Truth Table without Load V <sub>IL</sub> =0.9V,V <sub>IH</sub> =3.15V V <sub>DD</sub> =4.5V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>r</sub> <500ns Note 2 | -   | -    | _     |
| Functional Test 3          | -               | 3014        | Verify Truth Table without Load V <sub>IL</sub> =1.2V,V <sub>IH</sub> =4.2V V <sub>DD</sub> =6V,V <sub>SS</sub> =0V t <sub>r</sub> =t <sub>r</sub> <400ns Note 2    | -   | -    |       |
| Quiescent Current          | l <sub>DD</sub> | 3005        | V <sub>IL</sub> =0V,V <sub>IH</sub> =6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V<br>All Outputs Open<br>Note 3                                                    | -   | 8    | μА    |
| Low Level Input<br>Current | I <sub>IL</sub> | 3009        | V <sub>IN</sub> (Under Test)=0V<br>V <sub>IN</sub> (Remaining<br>Inputs)=6V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V                                              | •   | -1   | μΑ    |

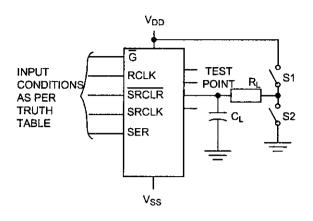


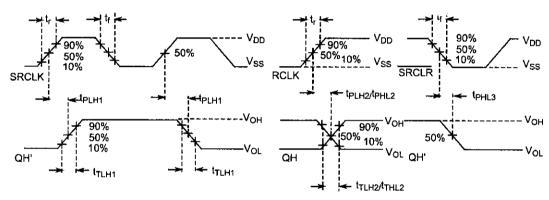
|                                      | Characteristics                              | Symbols          | MIL-STD-883 | Test Conditions                                                                                                        | Limits |      | Units |
|--------------------------------------|----------------------------------------------|------------------|-------------|------------------------------------------------------------------------------------------------------------------------|--------|------|-------|
|                                      |                                              |                  | Test Method | Note 1                                                                                                                 | Min    | Max  |       |
|                                      | High Level Input<br>Current                  | ħн               | 3010        | V <sub>IN</sub> (Under Test)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>DD</sub> =6V,V <sub>SS</sub> =0V | -      | 1    | μА    |
|                                      | Low Level Output<br>Voltage 1                | V <sub>OL1</sub> | 3007        | $V_{IL}$ =0.3V, $V_{IH}$ =1.5V, $I_{OL}$ =20 $\mu$ A $V_{DD}$ =2V, $V_{SS}$ =0V                                        | -      | 100  | mV    |
|                                      | Low Level Output<br>Voltage 2                | V <sub>OL2</sub> | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =20μΑ<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V  | -      | 100  | mV    |
| QA, &&, QC, &D                       | Low Level Output<br>Voltage 3                | V <sub>OL3</sub> | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =20µA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V     | 1      | 100  | mV    |
| QE at ac ah                          | Low Level Output<br>Voltage 4,               | V <sub>OL4</sub> | 3007        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OL</sub> =6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V   | 1      | 400  | mV    |
|                                      | Low Level Output<br>Voltage 5,               | V <sub>OL5</sub> | 3007        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OL</sub> =7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V    | -      | 400  | mV    |
| Vole, Volt ->                        | High Level Output<br>Voltage 1               | V <sub>OH1</sub> | 3006        | V <sub>IL</sub> =0.3V, V <sub>IH</sub> =1.5V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =2V, V <sub>SS</sub> =0V    | 1.9    | -    | V     |
|                                      | High Level Output<br>Voltage 2               | V <sub>OH2</sub> | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V | 4.4    | -    | V     |
| QA, QB, QC, QD                       | High Level Output<br>Voltage 3               | V <sub>ОН3</sub> | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-20μA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V    | 5.9    | -    | V     |
| QE,QF,QG,QH                          | High Level Output<br>Voltage 4,              | V <sub>OH4</sub> | 3006        | V <sub>IL</sub> =0.9V, V <sub>IH</sub> =3.15V,<br>I <sub>OH</sub> =-6mA<br>V <sub>DD</sub> =4.5V, V <sub>SS</sub> =0V  | 3.7    | -    | V     |
|                                      | High Level Output<br>Voltage 5,              | V <sub>OH5</sub> | 3006        | V <sub>IL</sub> =1.2V, V <sub>IH</sub> =4.2V,<br>I <sub>OH</sub> =-7.8mA<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V   | 5.2    | -    | V     |
| VOH6, VOH7 as per paye 17 with limit | Input Clamp<br>Voltage (to V <sub>SS</sub> ) | V <sub>IC1</sub> | -           | I <sub>IN</sub> (Under Test)=<br>-0.1mA<br>V <sub>DD</sub> =Open, V <sub>SS</sub> =0V<br>All Other Pins Open           | -0.1   | -1.2 | V     |
| Vou6 = 3.7V<br>Vou7 = 5.2V           | Input Clamp<br>Voltage (to V <sub>DD</sub> ) | V <sub>IC2</sub> | -           | I <sub>IN</sub> (Under Test)=<br>0.1mA<br>V <sub>DD</sub> =0V, V <sub>SS</sub> =Open<br>All Other Pins Open            | 0.1    | 1.2  | V     |

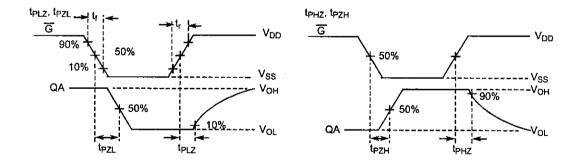


| Characteristics                                                |                  |             | Limits                                                                                                                                 |     | Units |    |
|----------------------------------------------------------------|------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----|
|                                                                |                  | Test Method | Test Method Note 1                                                                                                                     | Min | Max   |    |
| Output Leakage<br>Current Third<br>State Low Level<br>Applied  | l <sub>OZL</sub> | 3020        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =0V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V | -   | -10   | μА |
| Output Leakage<br>Current Third<br>State High Level<br>Applied | Гохн             | 3021        | V <sub>IN</sub> (G)=6V<br>V <sub>IN</sub> (Remaining<br>Inputs)=0V<br>V <sub>OUT</sub> =6V<br>V <sub>DD</sub> =6V, V <sub>SS</sub> =0V | -   | 10    | μА |

Notes to Electrical Measurement Tables outputs not under test show the open.


- 2.3.3
  - Unless otherwise specified all inputs and outputs shall be tested for each characteristic, ) Functional tests shall be performed with f = 10 kHz (min). The Maximum time to output comparator strobe=30µs.
  - Quiescent Current shall be tested using the following input conditions:
    - (a) All inputs = V<sub>II</sub>
    - (b)  $\overline{G} = V_{IL}$ ;  $\overline{SRCLR} = SER = V_{IH}$ ; SRCLK = RCLK = 9 low to high transitions to configure the outputs to a high level.
  - Guaranteed but not tested.
  - Measurements shall be performed as a go-no-go test on a 100% basis. Read and record measurements shall be performed on a sample of 5 components.


The pulse generator shall have the following characteristics:


 $V_{GEN}$  = 0 to  $V_{DD}$ ; f = 1 MHz minimum;  $t_r$  and  $t_f \le 6$  ns (10% to 90%); duty cycle = 50%;  $Z_{out}$  =  $50\Omega$ Output load capacitance C<sub>L</sub> = 50pF ± 5% including scope probe, wiring and stray capacitance without component in the test fixture and output load resistance  $R_L$  = 1k $\Omega$  ± 5%. Propagation delay and transition time shall be measured as follows:

| PARAMETER                                                                   | $R_{L}$ | CL   | S1     | S2     |
|-----------------------------------------------------------------------------|---------|------|--------|--------|
| t <sub>PZH</sub>                                                            | 1 kΩ    | 50pF | OPEN   | CLOSED |
| t <sub>PZL</sub>                                                            |         |      | CLOSED | OPEN   |
| t <sub>PHZ</sub>                                                            | 1 kΩ    | 50pF | OPEN   | CLOSED |
| t <sub>PLZ</sub>                                                            |         |      | CLOSED | OPEN   |
| t <sub>PHL</sub> ,t <sub>PLH</sub> ,<br>t <sub>THL</sub> , t <sub>TLH</sub> | -       | 50pF | OPEN   | OPEN   |









- 6. Read and record measurements shall be made on a sample of 5 components, with O failurs permitted.
- 7. A pulse, having the following conditions, shall be applied to the cleck inputs:  $V_P = 0V$  to  $V_{DD}$  We.

Maximum Clock frequency (CSK) requirement shall be considered as met if proper output state changes occur with the pulse repetition rate set to that given in the "Limits" column.

Limits



## 2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T<sub>amb</sub> =+22±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Electrical Measurements at Room Temperature, Electrical Measurements.

The drift values ( $\Delta$ ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

| Characteristics             | Symbols          |            | Units |       |    |
|-----------------------------|------------------|------------|-------|-------|----|
|                             |                  | Drift      | Abs   | olute |    |
|                             |                  | Value<br>Δ | Min   | Max   |    |
| Quiescent Current           | I <sub>DD</sub>  | ±120       | -     | 400   | nA |
| Low Level Input Current     | I <sub>IL</sub>  | ±20        | -     | -50   | nA |
| High Level Input Current    | I <sub>IH</sub>  | ±20        | -     | 50    | пA |
| Low Level Output Voltage 4  | V <sub>OL4</sub> | ±26        | -     | 260   | mV |
| High Level Output Voltage 4 | V <sub>OH4</sub> | ±0.2       | 3.98  | -     | V  |
| Threshold Voltage N-Channel | V <sub>THN</sub> | ±0.3       | -0.45 | -1.45 | V  |
| Threshold Voltage P-Channel | V <sub>THP</sub> | ±0.3       | 0.45  | 1.35  | V  |

, V<sub>он</sub>6

# NOTES:

Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

## 2.5 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at  $T_{amb}$  =+22 $\pm$ 3°C.

The test methods and test conditions shall be as per the corresponding test defined in Electrical Measurements at Room Temperature, Electrical Measurements.

The drift values ( $\Delta$ ) shall not be exceeded for each characteristic where specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

| LowLevel Output Volkage 6   | Vole             | ±26  | _    | 260 | m۷       |
|-----------------------------|------------------|------|------|-----|----------|
| High Level Output Voltage 6 | V <sub>OH6</sub> | ±0.2 | 3.98 | -   | <b>V</b> |



| Characteristics                                        | Symbols          |                | Limits | : :   | Units |
|--------------------------------------------------------|------------------|----------------|--------|-------|-------|
|                                                        |                  | Drift<br>Value | Abs    | olute |       |
|                                                        |                  | Δ              | Min    | Max   |       |
| Functional Test 1                                      | -                | -              | -      | -     | -     |
| Functional Test 2                                      |                  | -              | -      | -     | -     |
| Functional Test 3                                      | -                | -              | -      | -     | -     |
| Quiescent Current                                      | I <sub>DD</sub>  | ±120           | -      | 400   | nA    |
| Low Level Input Current                                | I <sub>IL</sub>  | ±20            | -      | -50   | nA    |
| High Level Input Current                               | I <sub>IH</sub>  | ±20            | -      | 50    | nA    |
| Low Level Output Voltage 4                             | V <sub>OL4</sub> | ±26            | -      | 260   | mV    |
| Low Level Output Voltage 5                             | $V_{OL5}$        | ±26            | -      | 260   | mV    |
| High Level Output Voltage 4                            | V <sub>OH4</sub> | ±0.2           | 3.98   | -     | V     |
| High Level Output Voltage 5                            | V <sub>OH5</sub> | ±0.2           | 5.48   | -     | V     |
| Threshold Voltage N-Channel                            | V <sub>THN</sub> | ±0.3           | -0.45  | -1.45 | V     |
| Threshold Voltage P-Channel                            | V <sub>THP</sub> | ±0.3           | 0.45   | 1.35  | V     |
| Output Leakage Current Third State, Low Level Applied  | lozL             | ±200           | -      | -500  | nA    |
| Output Leakage Current Third State, High Level Applied | l <sub>ozh</sub> | ±200           | -      | 500   | nA    |

VOL6, VOL7 →

# NOTES:

Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

The drift values ( $\Delta$ ) are applicable to the Operating Life test only.

| Law Level Dutput Voltage 6   | VOLG | ±26  | _    | 260 | m٧ |
|------------------------------|------|------|------|-----|----|
| Low Level Ontonk Voltage 7   | Vol7 | ±26  | _    | 260 | mV |
| High Level Onkent Voltrage 6 | Vous | ±0.2 | 3.98 | -   | ٧  |
| High Lovel Output Voltage 7  | Vou7 | ±0.2 | 5.48 | 1   | V  |



# 2.6 <u>HIGH TEMPERATURE REVERSE BIAS BURN-IN CONDITIONS</u>

# 2.6.1 N-Channel HTRB

| Characteristics                             | Symbols          | Test Conditions         | Units |
|---------------------------------------------|------------------|-------------------------|-------|
| Ambient Temperature                         | T <sub>amb</sub> | +125 (+0 -5)            | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub> | Open or V <sub>SS</sub> | ·v    |
| Inputs SRCLR, SRCLK, RCLK, G, SER           | V <sub>IN</sub>  | V <sub>SS</sub>         | V     |
| Positive Supply Voltage                     | V <sub>DD</sub>  | 6 (+0 -0.5)             | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>  | 0                       | V     |
| Duration                                    | t ·              | 72                      | Hours |

## NOTES:

- 1. Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.
- 2. Output Load =  $1k\Omega$  min to  $10k\Omega$  max.

# 2.6.2 P-Channel HTRB

| Characteristics                             | Symbols          | Test Conditions         | Units |
|---------------------------------------------|------------------|-------------------------|-------|
| Ambient Temperature                         | T <sub>amb</sub> | +125 (+0 -5)            | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub> | Open or V <sub>DD</sub> | ·V    |
| Inputs SRCLR, SRCLK, RCLK, G, SER           | V <sub>IN</sub>  | V <sub>DD</sub>         | V     |
| Positive Supply Voltage                     | V <sub>DD</sub>  | 6 (+0 -0.5)             | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>  | 0                       | V     |
| Duration                                    | t                | 72                      | Hours |

# **NOTES:**

- 1. Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.
- 2. Output Load =  $1k\Omega$  min to  $10k\Omega$  max.



# 2.7 POWER BURN-IN CONDITIONS

| Characteristics                             | Symbols                                | Test Conditions                                                                         | Units |
|---------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|-------|
| Ambient Temperature                         | T <sub>amb</sub>                       | +125 (+0 -5)                                                                            | °C    |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub>                       | V <sub>DD</sub>                                                                         | V     |
| Inputs SRCLR, SER                           | V <sub>IN</sub>                        | V <sub>DD</sub>                                                                         | V     |
| Inputs SRCLK, RCLK                          | V <sub>IN</sub>                        | V <sub>GEN1</sub>                                                                       | V     |
| Input G                                     | V <sub>IN</sub>                        | V <sub>GEN2</sub>                                                                       | V     |
| Pulse Voltage                               | V <sub>GEN</sub>                       | 0V to V <sub>DD</sub>                                                                   | V     |
| Pulse Frequency Square Wave                 | f <sub>GEN1</sub><br>f <sub>GEN2</sub> | 100k ± 10%<br>50k ± 10%<br>50 ± 15% Duty Cycle<br>t <sub>r</sub> =t <sub>f</sub> ≤400ns | Hz    |
| Positive Supply Voltage                     | V <sub>DD</sub>                        | 6 (+0 -0.5)                                                                             | V     |
| Negative Supply Voltage                     | V <sub>SS</sub>                        | 0                                                                                       | V     |

#### NOTES:

- 1. Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.
- 2. Output Load =  $1k\Omega$  min to  $10k\Omega$  max.

| 2.8 | OPERATING LIFE CONDITIONS                              |
|-----|--------------------------------------------------------|
|     | The conditions shall be as specified for power burn-in |
|     |                                                        |

## 2.9 TOTAL DOSE RADIATION TESTING

2.9.1 Bias Conditions and Total Dose Level for Total Dose Radiation Testing

Continuous bias shall be applied during irradiation testing as specified below.

The total dose level applied shall be as specified in the component type variant information herein or in the purchase order.



| haracteristics Symbols                      |                  | Test Conditions | Units |  |
|---------------------------------------------|------------------|-----------------|-------|--|
| Ambient Temperature                         | T <sub>amb</sub> | + 22 ± 3        | °C    |  |
| Outputs QA, QB, QC, QD, QE, QF, QG, QH, QH' | V <sub>OUT</sub> | Open            | ( 'V  |  |
| Inputs SRCLR, G                             | V <sub>IN</sub>  | V <sub>SS</sub> | V     |  |
| Inputs SRCLK, RCLK, SER                     | V <sub>IN</sub>  | $V_{DD}$        | V     |  |
| Positive Supply Voltage                     | V <sub>DD</sub>  | 6 ± 0.3         | V     |  |
| Negative Supply Voltage                     | V <sub>SS</sub>  | 0               | V     |  |

#### NOTES:

## 2.9.2 <u>Electrical Measurements for Total Dose Radiation Testing</u>

Prior to irradiation testing the devices shall have successfully met Room Temperature Electrical Measurements specified herein.

Unless otherwise stated the measurements shall be performed at  $T_{amb}$  = +22 ± 3 °C. The test methods and test conditions shall be as per the corresponding test defined in Electrical Measurements at Room Temperature, Electrical Measurements.

The parameters to be measured during and on completion of irradiation testing are shown below.

Unless otherwise specified all inputs and outputs shall be tested for each characteristic.

| Characteristics             | Symbols          | Limits         |      |       | Units    |
|-----------------------------|------------------|----------------|------|-------|----------|
|                             |                  | Drift Absolute |      | olute | <b>-</b> |
|                             |                  | Values<br>Δ    | Min  | Max   |          |
| Quiescent Current           | I <sub>DD</sub>  | -              | -    | 40    | μA       |
| Threshold Voltage N-Channel | V <sub>THN</sub> | ±0.6           | -0.4 | -1.5  | V        |
| Threshold Voltage P-Channel | V <sub>THP</sub> | ±0.6           | 0.4  | 1.4   | V        |

<sup>1.</sup> Input Protection Resistor =  $680\Omega$  min to  $47k\Omega$  max.



# APPENDIX 'A'

# AGREED DEVIATIONS FOR STMICROELECTRONICS (F)

| ITEMO AFFECTED                                                 |                                                                                                                                                                                                                                              |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEMS AFFECTED                                                 | DESCRIPTION OF DEVIATIONS                                                                                                                                                                                                                    |
| Deviations from<br>Screening Tests - Chart<br>F3               | External Visual Inspection: The criteria applicable to chip out are those described in MIL-STD-883, Test Method 2009, Paras 3.3.6(b) and 3.3.7(a).                                                                                           |
|                                                                | High Temperature Reverse Bias Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.                                                                                                                                    |
|                                                                | Power Burn-in test is performed using STMicroelectronics Specification Ref: 0019255.                                                                                                                                                         |
| Deviations from<br>Qualification and<br>Periodic Tests - Chart | External Visual Inspection: The criteria applicable to chip out are those described in MIL-STD-883, Test Method 2009, Paras 3.3.6(b) and 3.3.7(a).                                                                                           |
| F4                                                             | Operating Life: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.                                                                                                                                                           |
| Deviations from<br>Electrical<br>Measuremente et High          | Electrical Measurements at High and Low Temperatures may be considered guaranteed but not tested if successful pilot lot testing has been performed on the wafer lot which includes High and Low Temperature Electrical                      |
| and Low Temperatures                                           | Measurements per the detail specification.                                                                                                                                                                                                   |
| Measurene                                                      | A summary of the pilot lot testing shall be provided if required by the burchase oder.                                                                                                                                                       |
| Deviations from Room<br>Temperature Electrical<br>Measurements | All AC characteristics (Capacitance and Timings) may be considered guaranteed but not tested if successful pilot lot testing has been performed on the wafer lot which includes AC characteristic measurements per the detail specification. |
|                                                                | A summary of the pilot lot testing shall be provided if required by the burchase order.                                                                                                                                                      |