

Page 1 of 18

# CAPACITORS, FIXED, CERAMIC DIELECTRIC, TYPE I, HIGH VOLTAGE, 1KV TO 5KV

# **BASED ON TYPES VR, CV AND CH**

**ESCC Detail Specification No. 3001/033** 



| Issue 4 Draft A | October 2012 |
|-----------------|--------------|
|-----------------|--------------|



Document Custodian: European Space Agency – see <a href="https://escies.org">https://escies.org</a>



### **LEGAL DISCLAIMER AND COPYRIGHT**

European Space Agency, Copyright © 2012. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly by the use and application of this ESCC publication.

This publication, without prior permission of the European Space Agency and provided it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.



# **DOCUMENTATION CHANGE NOTICE**

(Refer to <a href="https://escies.org">https://escies.org</a> for ESCC DCR content)

| DCR No. | CHANGE DESCRIPTION                                                            |
|---------|-------------------------------------------------------------------------------|
| TBD     | Specification updated to incorporate editorial and technical changes per DCR. |



# **TABLE OF CONTENTS**

| 1     | GENERAL                                                    | 5  |
|-------|------------------------------------------------------------|----|
| 1.1   | SCOPE                                                      | 5  |
| 1.2   | APPLICABLE DOCUMENTS                                       | 5  |
| 1.3   | TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS       | 5  |
| 1.4   | THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS      | 5  |
| 1.4.1 | The ESCC Component Number                                  | 5  |
| 1.4.2 | Component Type Variants and Range of Components            | 6  |
| 1.5   | MAXIMUM RATINGS                                            | 8  |
| 1.6   | PHYSICAL DIMENSIONS                                        | 9  |
| 1.6.1 | Case Type VR with Leaded Radial Leads                      | 9  |
| 1.6.2 | Case Type CV with Leaded Radial Leads                      | 10 |
| 1.6.3 | Case Type CH with Straight DIL Leads                       | 11 |
| 1.6.4 | Case Type CH with L DIL Leads                              | 12 |
| 1.7   | FUNCTIONAL DIAGRAM                                         | 12 |
| 2     | REQUIREMENTS                                               | 13 |
| 2.1   | GENERAL                                                    | 13 |
| 2.1.1 | Deviations from the Generic Specification                  | 13 |
| 2.2   | MARKING                                                    | 13 |
| 2.3   | ROBUSTNESS OF TERMINATIONS                                 | 13 |
| 2.4   | ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES | 14 |
| 2.4.1 | Room Temperature Electrical Measurements                   | 14 |
| 2.4.2 | High and Low Temperatures Electrical Measurements          | 14 |
| 2.5   | INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS         | 15 |
| 2.6   | BURN-IN                                                    | 17 |



### 1 GENERAL

### 1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

### 1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

(a) ESCC Generic Specification No. 3001.

### 1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

### 1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

### 1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 300103301470K1R

- Detail Specification Reference: 3001033
- Component Type Variant Number: 01 (as required)
- Characteristic code: Capacitance Value (47pF): 470 (as required)
- Characteristic code: Capacitance Tolerance (±10%): K (as required)
- Characteristic code: Temperature Coefficient (±30 x10<sup>-6</sup>/°C): 1
- Rating code: Rated Voltage (3kV): R (as required)

### 1.4.1.1 Characteristics and Ratings Codes

Characteristics and ratings to be codified as part of the ESCC Component Number shall be as follows:

(a) Rated Capacitance Value C<sub>n</sub> expressed by means of the following codes in accordance with ESCC Basic Specification No. 21700. The unit quantity shall be picofarad (pF).

| Capacitance Value C <sub>n</sub> (pF) | Code |
|---------------------------------------|------|
| XX 10 <sup>1</sup>                    | XX1  |
| XX 10 <sup>2</sup>                    | XX2  |
| XX 10 <sup>3</sup>                    | XX3  |
| XX 10 <sup>4</sup>                    | XX4  |



(b) Capacitance Tolerance expressed by the following codes in accordance with ESCC Basic Specification No. 21700:

| Tolerance<br>(± %) | Code Letter |
|--------------------|-------------|
| 5                  | J           |
| 10                 | K           |
| 20                 | M           |

(c) Temperature Coefficient expressed by the following code:

| Temperature Coefficient (± 10 <sup>-6</sup> /°C) | Code |
|--------------------------------------------------|------|
| 30                                               | 1    |

(d) Rated Voltage expressed by the following codes:

| Rated Voltage<br>(kV) | Code Letter |
|-----------------------|-------------|
| 1                     | M           |
| 2                     | Р           |
| 3                     | R           |
| 4                     | S           |
| 5                     | Z           |

# 1.4.2 <u>Component Type Variants and Range of Components</u>

The component type variants and range of components applicable to this specification are as follows:

| Variant<br>Number |                          | Package<br>(Not  | e Details<br>te 1) |                                    |                                          | Сара                                     | acitance Rang<br>(pF) (Note 4)           |                                         |                                          | Weight<br>Max (g) |
|-------------------|--------------------------|------------------|--------------------|------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-------------------|
|                   | Case<br>Type<br>(Note 2) | Lead<br>Type     | No. of<br>Leads    | Lead<br>Mat. &<br>Fin.<br>(Note 3) | Rated<br>Voltage<br>U <sub>R</sub> = 1kV | Rated<br>Voltage<br>U <sub>R</sub> = 2kV | Rated<br>Voltage<br>U <sub>R</sub> = 3kV | Rated<br>Voltage<br>U <sub>R</sub> =4kV | Rated<br>Voltage<br>U <sub>R</sub> = 5kV |                   |
| 01                | VR30S                    | Leaded<br>Radial | 2                  | A3                                 | 390 to 2200                              | 56 to 470                                | 33 to 330                                | -                                       | -                                        | 1                 |
| 02                | VR30                     | Leaded<br>Radial | 2                  | A3                                 | 2700 to<br>5600                          | 560 to 1800                              | 390 to 680                               | -                                       | -                                        | 1                 |
| 03                | VR40                     | Leaded<br>Radial | 2                  | A3                                 | 6800 to<br>15000                         | 2200 to<br>4700                          | 820 to 1500                              | 390 to 820                              | 330 to 560                               | 2                 |
| 04                | VR50                     | Leaded<br>Radial | 2                  | A3                                 | 18000 to<br>33000                        | 5600 to<br>10000                         | 1800 to<br>2700                          | 1000 to<br>1800                         | 680 to 1200                              | 3                 |
| 05                | VR66                     | Leaded<br>Radial | 2                  | A3                                 | 39000 to<br>68000                        | 12000 to<br>18000                        | 3300 to<br>5600                          | 2200 to<br>3300                         | 1500 to<br>2200                          | 5                 |
| 06                | VR84                     | Leaded<br>Radial | 2                  | A3                                 | 82000 to<br>100000                       | 22000 to<br>39000                        | 6800 to<br>12000                         | 3900 to<br>6800                         | 2700 to<br>4700                          | 8                 |
| 07                | VR90                     | Leaded<br>Radial | 2                  | A3                                 | 120000 to<br>330000                      | 47000 to<br>100000                       | 15000 to<br>33000                        | 8200 to<br>18000                        | 5600 to<br>12000                         | 19                |
| 08                | CV41                     | Leaded<br>Radial | 2                  | A3                                 | 6800 to<br>15000                         | 2200 to<br>4700                          | 820 to 1500                              | 390 to 820                              | 330 to 560                               | 2                 |



| Variant<br>Number |          | Package<br>(Not |        |          | Capacitance Range C <sub>n</sub> (pF) (Note 4) |             |             |             |             |         |
|-------------------|----------|-----------------|--------|----------|------------------------------------------------|-------------|-------------|-------------|-------------|---------|
| Number            | Case     | Lead            | No. of | Lead     | Rated                                          | Rated       | Rated       | Rated       | Rated       | Max (g) |
|                   | Type     | Type            | Leads  | Mat. &   | Voltage                                        | Voltage     | Voltage     | Voltage     | Voltage     |         |
|                   | (Note 2) |                 |        | Fin.     | $U_R = 1kV$                                    | $U_R = 2kV$ | $U_R = 3kV$ | $U_R = 4kV$ | $U_R = 5kV$ |         |
|                   |          |                 |        | (Note 3) |                                                |             |             |             |             |         |
| 09                | CH41     | Straight        | 6      | N9       | 6800 to                                        | 2200 to     | 820 to 1500 | 390 to 820  | 330 to 560  | 2       |
|                   |          | DIL             |        |          | 15000                                          | 4700        |             |             |             |         |
| 10                | CH41     | L DIL           | 6      | N9       | 6800 to                                        | 2200 to     | 820 to 1500 | 390 to 820  | 330 to 560  | 2       |
|                   |          |                 |        |          | 15000                                          | 4700        |             |             |             |         |
| 11                | CV51     | Leaded          | 2      | A3       | 18000 to                                       | 5600 to     | 1800 to     | 1000 to     | 680 to 1200 | 3       |
|                   |          | Radial          |        |          | 33000                                          | 10000       | 2700        | 1800        |             |         |
| 12                | CH51     | Straight        | 8      | N9       | 18000 to                                       | 5600 to     | 1800 to     | 1000 to     | 680 to 1200 | 3       |
|                   |          | DIL             |        |          | 33000                                          | 10000       | 2700        | 1800        |             |         |
| 13                | CH51     | L DIL           | 8      | N9       | 18000 to                                       | 5600 to     | 1800 to     | 1000 to     | 680 to 1200 | 3       |
|                   |          |                 |        |          | 33000                                          | 10000       | 2700        | 1800        |             |         |
| 14                | CV61     | Leaded          | 2      | A3       | 39000 to                                       | 12000 to    | 3300 to     | 2200 to     | 1500 to     | 5       |
|                   |          | Radial          |        |          | 68000                                          | 18000       | 5600        | 3300        | 2200        |         |
| 15                | CH61     | Straight        | 10     | N9       | 39000 to                                       | 12000 to    | 3300 to     | 2200 to     | 1500 to     | 5       |
|                   |          | DIL             |        |          | 68000                                          | 18000       | 5600        | 3300        | 2200        |         |
| 16                | CH61     | L DIL           | 10     | N9       | 39000 to                                       | 12000 to    | 3300 to     | 2200 to     | 1500 to     | 5       |
|                   |          |                 |        |          | 68000                                          | 18000       | 5600        | 3300        | 2200        |         |
| 17                | CV76     | Leaded          | 2      | A3       | 82000 to                                       | 22000 to    | 6800 to     | 3900 to     | 2700 to     | 8       |
|                   |          | Radial          |        |          | 100000                                         | 39000       | 12000       | 6800        | 4700        |         |
| 18                | CH76     | Straight        | 12     | N9       | 82000 to                                       | 22000 to    | 6800 to     | 3900 to     | 2700 to     | 8       |
|                   |          | DIL             |        |          | 100000                                         | 39000       | 12000       | 6800        | 4700        |         |
| 19                | CH76     | L DIL           | 12     | N9       | 82000 to                                       | 22000 to    | 6800 to     | 3900 to     | 2700 to     | 8       |
|                   |          |                 |        |          | 100000                                         | 39000       | 12000       | 6800        | 4700        |         |
| 20                | CV91     | Leaded          | 2      | A3       | 120000 to                                      | 47000 to    | 15000 to    | 8200 to     | 5600 to     | 19      |
|                   |          | Radial          |        |          | 330000                                         | 100000      | 33000       | 18000       | 12000       |         |
| 21                | CH91     | Straight        | 28     | N9       | 120000 to                                      | 47000 to    | 15000 to    | 8200 to     | 5600 to     | 19      |
|                   |          | DIL             |        |          | 330000                                         | 100000      | 33000       | 18000       | 12000       |         |
| 22                | CH91     | L DIL           | 28     | N9       | 120000 to                                      | 47000 to    | 15000 to    | 8200 to     | 5600 to     | 19      |
|                   |          |                 |        |          | 330000                                         | 100000      | 33000       | 18000       | 12000       |         |

### **NOTES:**

- 1. See Physical Dimensions.
- 2. For Variants 01 to 07 (case type VR) the body shall be coated with epoxy resin. Variants 08 to 22 (case types CV & CH) are classified as non-insulated.
- 3. The lead materials and finishes shall be in accordance with the requirements of ESCC Basic Specification No. 23500.
- 4. Available capacitance values and tolerances are as follows:

Tolerance: ±5%; value series: E12
 Tolerance: ±10%; value series: E12

• Tolerance: ±20%; value series: E12

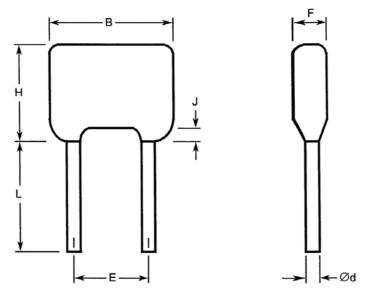


### 1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

| Characteristics             | Symbols          | Maximum Ratings | Units | Remarks                            |
|-----------------------------|------------------|-----------------|-------|------------------------------------|
|                             |                  |                 |       |                                    |
| Rated Voltage               | $U_R$            | 1, 2, 3, 4, 5   | kV    | Note 1                             |
| Operating Temperature Range | T <sub>op</sub>  | -55 to +125     | °C    | Without derating. T <sub>amb</sub> |
| Storage Temperature Range   | $T_{stg}$        | -55 to +125     | °C    |                                    |
| Soldering Temperature       | T <sub>sol</sub> | +260            | °C    | Note 2                             |

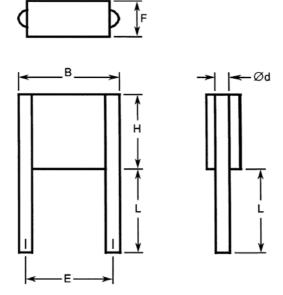

### NOTES:

- 1. As required; See Component Type Variants and Range of Components.
- 2. Duration 5 seconds maximum at a distance of not less than 1.5mm from the body and the same lead shall not be resoldered until 3 minutes have elapsed.



### 1.6 PHYSICAL DIMENSIONS

### 1.6.1 Case Type VR with Leaded Radial Leads




| Variant | Case  | Dimensions (mm) |          |            |      |       |     |          |          |          |  |
|---------|-------|-----------------|----------|------------|------|-------|-----|----------|----------|----------|--|
| Number  | Туре  | B<br>Max        | Q<br>Not | id<br>te 1 | E    | E     |     | H<br>Max | J<br>Max | L<br>Min |  |
|         |       |                 | Min      | Max        | Min  | Max   |     |          | Note 1   | Note 1   |  |
| 01      | VR30S | 7.62            | 0.46     | 0.56       | 4.58 | 5.58  | 5   | 4.6      | 1.5      | 31.7     |  |
| 02      | VR30  | 7.62            | 0.46     | 0.56       | 4.58 | 5.58  | 5   | 9.62     | 1.5      | 31.7     |  |
| 03      | VR40  | 10.16           | 0.46     | 0.56       | 4.58 | 5.58  | 5   | 11.7     | 1.5      | 31.7     |  |
| 04      | VR50  | 12.7            | 0.59     | 0.69       | 9.66 | 10.66 | 5.1 | 14.2     | 1.5      | 31.7     |  |
| 05      | VR66  | 17.5            | 0.86     | 0.96       | 14.2 | 15.2  | 6.4 | 16.5     | 1.5      | 31.7     |  |
| 06      | VR84  | 23.62           | 0.86     | 0.96       | 20.4 | 22    | 6.4 | 19.78    | 1.5      | 31.7     |  |
| 07      | VR90  | 23.5            | 0.86     | 0.96       | 20.4 | 22    | 6.4 | 42       | 1.5      | 31.7     |  |

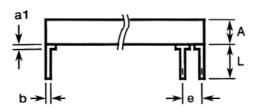
NOTES:
1. All leads.

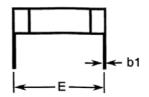


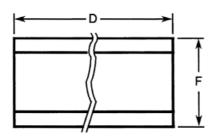
# 1.6.2 <u>Case Type CV with Leaded Radial Leads</u>



| Variant | Case | Dimensions (mm) |      |        |       |       |     |      |      |     |  |
|---------|------|-----------------|------|--------|-------|-------|-----|------|------|-----|--|
| Number  | Type | В               | Q    | Ød E   |       | F     | Н   | l    | _    |     |  |
|         |      | Max             | Not  | Note 1 |       | Max   | Max | Not  | te 1 |     |  |
|         |      |                 | Min  | Max    | Min   | Max   |     |      | Min  | Max |  |
| 08      | CV41 | 10.6            | 0.65 | 0.75   | 7.7   | 8.7   | 3.8 | 8.7  | 22   | 28  |  |
| 11      | CV51 | 11.9            | 0.85 | 0.95   | 9.66  | 10.66 | 3.8 | 10.7 | 22   | 28  |  |
| 14      | CV61 | 16.5            | 0.85 | 0.95   | 14.74 | 15.74 | 3.8 | 13.6 | 22   | 28  |  |
| 17      | CV76 | 22.7            | 0.85 | 0.95   | 20.4  | 22    | 3.8 | 16.6 | 22   | 28  |  |
| 20      | CV91 | 22.7            | 1.15 | 1.25   | 20.4  | 22    | 3.8 | 40.6 | 22   | 28  |  |


# **NOTES:**


1. All leads.

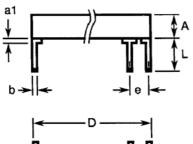


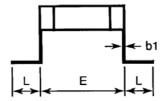


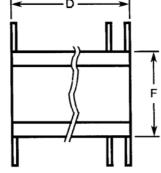

### Case Type CH with Straight DIL Leads 1.6.3









| Variant | Case | Dimensions (mm) |        |      |      |       |       |      |       |       |      |      |      |     |      |
|---------|------|-----------------|--------|------|------|-------|-------|------|-------|-------|------|------|------|-----|------|
| Number  | Type | Α               | a1     | k    | )    | b     | 1     | D    | Е     | =     | 6    | 9    | F    | L   | _    |
|         |      | Max             | Max    | Not  | e 1  | Not   | te 1  | Max  | Not   | te 1  | Not  | e 1  | Max  | Not | te 1 |
|         |      |                 | Note 1 | Min  | Max  | Min   | Max   |      | Min   | Max   | Min  | Max  |      | Min | Max  |
| 09      | CH41 | 3.8             | 2      | 0.45 | 0.55 | 0.204 | 0.304 | 8.7  | 7.7   | 8.7   | 2.49 | 2.59 | 9.2  | 12  | 14   |
| 12      | CH51 | 3.8             | 2      | 0.45 | 0.55 | 0.204 | 0.304 | 10.7 | 9.66  | 10.66 | 2.49 | 2.59 | 10.7 | 12  | 14   |
| 15      | CH61 | 3.8             | 2      | 0.45 | 0.55 | 0.204 | 0.304 | 13.6 | 13.5  | 14.5  | 2.49 | 2.59 | 14.9 | 12  | 14   |
| 18      | CH76 | 3.8             | 2      | 0.45 | 0.55 | 0.204 | 0.304 | 16.6 | 19.52 | 21.12 | 2.49 | 2.59 | 21.6 | 12  | 14   |
| 21      | CH91 | 3.8             | 2      | 0.45 | 0.55 | 0.204 | 0.304 | 40.6 | 19.52 | 21.12 | 2.49 | 2.59 | 24   | 12  | 14   |


NOTES: 1. All leads.



### 1.6.4 Case Type CH with L DIL Leads







| Variant | Case |          | Dimensions (mm) |          |      |          |       |          |          |           |      |      |          |          |           |
|---------|------|----------|-----------------|----------|------|----------|-------|----------|----------|-----------|------|------|----------|----------|-----------|
| Number  | Type | A<br>Max | a1<br>Max       | k<br>Not |      | b<br>Not | =     | D<br>Max | E<br>Not | E<br>te 1 | Not  |      | F<br>Max | l<br>Not | -<br>te 1 |
|         |      |          | Note 1          | Min      | Max  | Min      | Max   |          | Min      | Max       | Min  | Max  |          | Min      | Max       |
| 10      | CH41 | 3.8      | 2               | 0.45     | 0.55 | 0.204    | 0.304 | 8.7      | 7.7      | 8.7       | 2.49 | 2.59 | 9.2      | 2.04     | 3.04      |
| 13      | CH51 | 3.8      | 2               | 0.45     | 0.55 | 0.204    | 0.304 | 10.7     | 9.66     | 10.66     | 2.49 | 2.59 | 10.7     | 2.04     | 3.04      |
| 16      | CH61 | 3.8      | 2               | 0.45     | 0.55 | 0.204    | 0.304 | 13.6     | 13.5     | 14.5      | 2.49 | 2.59 | 14.9     | 2.04     | 3.04      |
| 19      | CH76 | 3.8      | 2               | 0.45     | 0.55 | 0.204    | 0.304 | 16.6     | 19.52    | 21.12     | 2.49 | 2.59 | 21.6     | 2.04     | 3.04      |
| 22      | CH91 | 3.8      | 2               | 0.45     | 0.55 | 0.204    | 0.304 | 40.6     | 19.52    | 21.12     | 2.49 | 2.59 | 24       | 2.04     | 3.04      |

NOTES:

1. All leads.

### 1.7 **FUNCTIONAL DIAGRAM**



# **NOTES:**

All leads on each side of the component are connected to the same capacitor terminal.



### 2 REQUIREMENTS

### 2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

### 2.1.1 <u>Deviations from the Generic Specification</u>

### 2.1.1.1 Deviations from Special In-Process Controls (Chart F2)

- (a) Robustness of Terminations: Shall be replaced with a lead peel test, performed on a sample of 5 components from each manufacturing lot with 0 failures allowed. The sample components shall be leaded but not encapsulated or coated. Where necessary, the leads of the component under test shall be bent through 90° in the plane of the joint such that a tensile force applied to the leads will result in a peeling force being applied to the leads' joint. A tensile force shall be applied evenly across the length on the capacitor terminal, to all leads on that side of the component together, until the lead joint peels. All leads shall be tested. The applied peeling force shall be as follows:
  - For case types VR & CV: 8.9N minimum
  - For case type CH: 22.25N minimum

### 2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) The ESCC qualified components symbol (for ESCC qualified components only).
- (b) The ESCC Component Number.
- (c) Traceability information.

### 2.3 ROBUSTNESS OF TERMINATIONS

The terminations of these devices are classified as rigid. The test conditions for Robustness of Terminations shall be as specified in the ESCC Generic Specification and as follows:

- Applicable test: Ua1 (tensile) only.
- Terminations tested: a minimum of one randomly selected lead on each side of the component.
- Applied force:
  - For case types VR & CH: 5N minimum
  - For case type CV: 10N minimum



### 2.4 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures.

### 2.4.1 Room Temperature Electrical Measurements

The measurements shall be performed at  $T_{amb}$  = +22 ±3°C.

| Characteristics          | Symbols         | Test Method and             | Tolerance | Lir               | nits                 | Units |
|--------------------------|-----------------|-----------------------------|-----------|-------------------|----------------------|-------|
|                          |                 | Conditions                  | (± %)     | Min               | Max                  |       |
| Capacitance              | $C_A$           | ESCC No. 3001               |           |                   |                      | pF    |
|                          |                 |                             | 5         | $0.95C_n$         | 1.05C <sub>n</sub>   |       |
|                          |                 |                             | 10        | $0.9C_n$          | 1.1C <sub>n</sub>    |       |
|                          |                 |                             | 20        | $0.8C_n$          | 1.2C <sub>n</sub>    |       |
| Tangent of Loss<br>Angle | tgδ             | ESCC No. 3001               | All       | -                 | 10 x10 <sup>-4</sup> | -     |
| Insulation               | $R_{ID}$        | ESCC No. 3001               | All       |                   |                      |       |
| Resistance               |                 | $C_n \le 10000pF$           |           | 100               | -                    | GΩ    |
| (Dielectric)             |                 | $C_n > 10000pF$             |           | 1000              | -                    | MΩ.μF |
| Insulation               | R <sub>IB</sub> | ESCC No. 3001               | All       |                   |                      |       |
| Resistance               |                 | Case type VR only           |           |                   |                      |       |
| (Body Insulation)        |                 | Note 2                      |           |                   |                      |       |
|                          |                 | $C_n \le 10000pF$           |           | 100               | -                    | GΩ    |
|                          |                 | C <sub>n</sub> > 10000pF    |           | 1000              | -                    | MΩ.μF |
| Voltage Proof            | VP <sub>D</sub> | ESCC No. 3001               | All       |                   |                      | V     |
| (Dielectric)             |                 | For $U_R = 1000V$           |           | 1.5U <sub>R</sub> | -                    |       |
|                          |                 | For $U_R \ge 2000V$         |           | 1.3U <sub>R</sub> | -                    |       |
| Voltage Proof            | VP <sub>B</sub> | ESCC No. 3001               | All       |                   |                      | V     |
| (Body Insulation)        |                 | Case type VR only<br>Note 2 |           |                   |                      |       |
|                          |                 | For $U_R = 1000V$           |           | 1.5U <sub>R</sub> | _                    |       |
|                          |                 | For $U_R \ge 2000V$         |           | 1.3U <sub>R</sub> | -                    |       |

### NOTES:

1. The measurements shall be performed on a sample of 5 components from each manufacturing lot with 0 failures allowed. In the event of any failure a 100% inspection may be performed. In the case of a 100% inspection, a 1% total percent defective is allowed.

### 2.4.2 High and Low Temperatures Electrical Measurements

| Characteristics | Symbols | Test Method and Conditions (Note 1) | Lin | nits | Units                |
|-----------------|---------|-------------------------------------|-----|------|----------------------|
|                 |         | (Note 1)                            | Min | Max  |                      |
| Temperature     | TC      | ESCC No. 3001                       | -30 | +30  | 10 <sup>-6</sup> /°C |
| Coefficient     |         | Note 2                              |     |      |                      |

### **NOTES:**

- 1. The measurements shall be performed on a sample of 5 components from each manufacturing lot with 0 failures allowed. In the event of any failure a 100% inspection may be performed.
- 2. In the case of a 100% inspection, a 1% total percent defective is allowed.



### 2.5 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at  $T_{amb}$  = +22 ±3°C.

Unless otherwise specified the test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

| Test Reference per ESCC         | Characteristics                                                           | Symbols          | L         | Units                |             |
|---------------------------------|---------------------------------------------------------------------------|------------------|-----------|----------------------|-------------|
| No. 3001                        |                                                                           |                  | Min       | Max                  |             |
| Rapid Change of Temperature     |                                                                           |                  |           |                      |             |
| Initial Measurements            | Capacitance                                                               | C <sub>A</sub>   | N         | Note 1               |             |
| Final Measurements              | Capacitance                                                               | C <sub>A</sub>   | N         | ote 1                |             |
|                                 | Change in Capacitance                                                     | $\Delta C_A/C_A$ | -1        | +1                   | %           |
|                                 | Tangent of Loss Angle                                                     | tgδ              | -         | 20 x10 <sup>-4</sup> | -           |
| Resistance to Soldering<br>Heat |                                                                           |                  |           | •                    |             |
| Initial Measurements            | Capacitance                                                               | C <sub>A</sub>   | N         | ote 1                |             |
| Final Measurements              | Capacitance                                                               | C <sub>A</sub>   | N         | ote 1                |             |
|                                 | Change in Capacitance                                                     | $\Delta C_A/C_A$ | -1        | +1                   | %           |
|                                 | Insulation Resistance (Dielectric)                                        | R <sub>ID</sub>  | N         | ote 1                |             |
|                                 | Insulation Resistance (Body Insulation)(Note 2)                           | R <sub>IB</sub>  | N         | ote 1                |             |
| Climatic Test Sequence          |                                                                           |                  |           |                      |             |
| Initial Measurements            | Capacitance                                                               | C <sub>A</sub>   | N         | ote 1                |             |
| Final Measurements              | Capacitance                                                               | $C_A$            | N         | ote 1                |             |
|                                 | Change in Capacitance                                                     | $\Delta C_A/C_A$ | -2        | +2                   | %           |
|                                 | Tangent of Loss Angle                                                     | tgδ              | -         | 20 x10 <sup>-4</sup> | -           |
|                                 | Insulation Resistance (Dielectric):                                       | R <sub>ID</sub>  |           |                      |             |
|                                 | $C_n \le 10000 pF$<br>$C_n > 10000 pF$                                    |                  | 10<br>100 | -                    | GΩ<br>MΩ.μF |
|                                 | Insulation Resistance (Body Insulation)(Note 2): C <sub>n</sub> ≤ 10000pF | R <sub>IB</sub>  | 10        | -                    | GΩ          |
|                                 | C <sub>n</sub> > 10000pF<br>Voltage Proof (Body<br>Insulation)(Note 2)    | $V_{PB}$         | 100<br>N  | ote 1                | MΩ.μF       |



| Test Reference per ESCC                    | Characteristics                                   | Symbols          | L         | imits                | Units       |
|--------------------------------------------|---------------------------------------------------|------------------|-----------|----------------------|-------------|
| No. 3001                                   |                                                   |                  | Min       | Max                  |             |
| Damp Heat Steady State                     |                                                   |                  |           |                      |             |
| Initial Measurements                       | Capacitance                                       | C <sub>A</sub>   | N         | ote 1                |             |
| Final Measurements                         | Capacitance                                       | C <sub>A</sub>   | N         | ote 1                |             |
|                                            | Change in Capacitance                             | $\Delta C_A/C_A$ | -2        | +2                   | %           |
|                                            | Tangent of Loss Angle                             | tgδ              | -         | 20 x10 <sup>-4</sup> | -           |
|                                            | Insulation Resistance (Dielectric):               | R <sub>ID</sub>  |           |                      |             |
|                                            | C <sub>n</sub> ≤ 10000pF                          |                  | 10        | -                    | GΩ          |
|                                            | $C_n > 10000pF$                                   |                  | 100       | -                    | MΩ.μF       |
|                                            | Insulation Resistance (Body Insulation)(Note 2):  | R <sub>IB</sub>  |           |                      |             |
|                                            | C <sub>n</sub> ≤ 10000pF                          |                  | 10        | -                    | GΩ          |
|                                            | $C_n > 10000pF$                                   |                  | 100       | -                    | MΩ.μF       |
|                                            | Voltage Proof (Body Insulation)(Note 2)           | $V_{PB}$         | N         | ote 1                |             |
| Operating Life                             |                                                   |                  |           |                      |             |
| Initial Measurements                       | Capacitance                                       | C <sub>A</sub>   | N         | ote 1                |             |
| Intermediate Measurements                  | Capacitance                                       | $C_A$            | N         | ote 1                |             |
| (1000 hours)                               | Change in Capacitance                             | $\Delta C_A/C_A$ | -3        | +3                   | %           |
|                                            | Insulation Resistance (Dielectric):               | R <sub>ID</sub>  |           |                      |             |
|                                            | C <sub>n</sub> ≤ 10000pF                          |                  | 10<br>100 | -                    | GΩ          |
|                                            | C <sub>n</sub> > 10000pF<br>Insulation Resistance | R <sub>IB</sub>  | 100       | _                    | MΩ.μF       |
|                                            | (Body Insulation)(Note 2):                        | INB              |           |                      |             |
|                                            | C <sub>n</sub> ≤ 10000pF                          |                  | 10        | _                    | GΩ          |
|                                            | C <sub>n</sub> > 10000pF                          |                  | 100       | -                    | MΩ.μF       |
| Final Measurements                         | Capacitance                                       | C <sub>A</sub>   | N         | ote 1                |             |
| (2000 hours)                               | Change in Capacitance                             | $\Delta C_A/C_A$ | -3        | +3                   | %           |
|                                            | Tangent of Loss Angle                             | tgδ              | _         | 20 x10 <sup>-4</sup> | _           |
|                                            | Insulation Resistance (Dielectric):               | R <sub>ID</sub>  |           |                      |             |
|                                            | C <sub>n</sub> ≤ 10000pF                          |                  | 10        | -                    | GΩ          |
|                                            | C <sub>n</sub> > 10000pF                          |                  | 100       | -                    | MΩ.μF       |
|                                            | Insulation Resistance                             | R <sub>IB</sub>  |           |                      |             |
|                                            | (Body Insulation)(Note 2):                        |                  | 40        |                      | 00          |
|                                            | $C_n \le 10000pF$<br>$C_n > 10000pF$              |                  | 10<br>100 | -                    | GΩ<br>MΩ.μF |
|                                            | Voltage Proof (Dielectric)                        | $V_{PD}$         |           | ote 1                | ινι32.μι    |
|                                            | Voltage Proof (Body                               | V <sub>PB</sub>  | Note 1    |                      |             |
|                                            | Insulation)(Note 2)                               | , 5R             | 14        | 0.0 1                |             |
| Capacitance-Temperature<br>Characteristics | Temperature Cofficient                            | TC               | N         | ote 3                |             |



### **NOTES:**

- 1. As specified in Room Temperature Electrical Measurements.
- 2. Case type VR only.
- 3. As specified in High and Low Temperatures Electrical Measurements.

### 2.6 BURN-IN

The requirements for Burn-in are specified in the ESCC Generic Specification. The following conditions shall also apply:

1. After Burn-in, the components shall be removed from the chamber and allowed to cool under normal atmospheric conditions for recovery for 24 hours minimum.





# APPENDIX A AGREED DEVIATIONS FOR AVX LTD (GB)

| Items Affected                   | Description of Deviations                              |
|----------------------------------|--------------------------------------------------------|
| Deviations from Generic          | Microsection Inspection: may be performed using AVX    |
| Specification:                   | inspection document as per PID.                        |
| Special In-Process Controls      | Internal Visual Inspection: may be performed using AVX |
| (Chart F2)                       | inspection document as per PID.                        |
| Deviations from Generic          | External Visual Inspection: may be performed using AVX |
| Specification:                   | inspection document as per PID.                        |
| Screening (Chart F3)             |                                                        |
| Deviations from Generic          | External Visual Inspection: may be performed using AVX |
| Specification:                   | inspection document as per PID.                        |
| Qualification and Periodic Tests |                                                        |
| (Chart F4)                       |                                                        |