DCR Attachment - Draft specification for review.

.....

Steve Thacker: ESCC Technical Writer - 18/06/2012

Page 1 of 11

CAPACITORS, FIXED, CHIPS, CERAMIC DIELECTRIC, TYPE II

BASED ON TYPE 1206

ESCC Detail Specification No. 3009/023

Issue 4 Draft A	June 2012
-----------------	-----------

Document Custodian: European Space Agency – see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2012. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entry, with respect to any loss or damage caused, or alleged to be caused, directly by the use and application of this ESCC publication.

This publication, without prior permission of the European Space Agency and provided it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
TBD	Specification updated to incorporate editorial and technical changes per DCR.

ISSUE 4 DRAFT A

TABLE OF CONTENTS

1.	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Component Type Variants and Range of Components	6
1.5	MAXIMUM RATINGS	7
1.6	PHYSICAL DIMENSIONS	8
1.7	FUNCTIONAL DIAGRAM	8
2.	REQUIREMENTS	8
2.1	GENERAL	8
2.1.1	Deviations from the Generic Specification	8
2.2	MARKING	9
2.3	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	9
2.3.1	Room Temperature Electrical Measurements	9
2.3.2	High and Low Temperatures Electrical Measurements	10
2.4	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	10
2.5	BURN-IN	11

1. **GENERAL**

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 APPLICABLE DOCUMENTS

The following documents form part of this specification and shall be read in conjunction with it:

(a) ESCC Generic Specification No. 3009.

1.3 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 300902301102KE

- Detail Specification Reference: 3009023
- Component Type Variant Number: 01 (as required)
- Characteristic code: Capacitance Value (1000pF): 102 (as required)
- Characteristic code: Capacitance Tolerance (±10%): K (as required)
- Rating code: Rated Voltage (100V): E (as required)

1.4.1.1 Characteristics and Ratings Codes

Characteristics and ratings to be codified as part of the ESCC Component Number shall be as follows:

(a) Rated Capacitance Value C_n expressed by means of the following codes in accordance with ESCC Basic Specification No. 21700. The unit quantity shall be picofarad (pF).

Capacitance Value C _n (pF)	Code
XX 10 ¹	XX1
XX 10 ²	XX2
XX 10 ³	XX3
XX 10 ⁴	XX4
XX 10 ⁵	XX5

(b) Capacitance Tolerance expressed by the following codes in accordance with ESCC Basic Specification No. 21700:

Tolerance (± %)	Code Letter
5	J
10	K
20	M

(c) Rated Voltage expressed by the following codes:

Rated Voltage (V)	Code Letter
16	X
25	A
50	С
100	E
200	G
400	K

1.4.2 <u>Component Type Variants and Range of Components</u>

The component type variants and range of components applicable to this specification are as follows:

Variant Number	Style	Capacitance Range,	Temperature Characteristic		Dimensions (mm) Terminal Material and Finish		Weight Max		
		Tolerance, Rated Voltage	for $V_T = U_R$ (%)	L Max	l Max	e Max	End Terminations	Termination Finish	(g)
01	1206	See Note 1	-30, +20	3.6	1.9	2.3	Ag/Pd	No finish	0.15
02	1206	See Note 1	-30, +20	4.1	2.4	2.3	Ag/Pd	Sn62 solder	0.15
03	1206	See Note 1	-30, +20	3.6	1.9	2.3	Ag/Pd/Pt	No finish	0.15
04	1206	See Note 1	-30, +20	4.1	2.4	2.3	Ag/Pd/Pt	Sn62 solder	0.15
05	1206	See Note 1	-30, +20	4.1	2.4	2.3	Ag + Ni barrier	Sn62 solder	0.15
06	1206	See Note 1	-30, +20	3.6	1.9	2.3	Ag + Ni barrier	Sn/Pb coating (Note 4)	0.15
07	1206	See Note 1	Not Applicable (Note 2)	3.6	1.9	1.6	Ag + Ni barrier	Sn/Pb coating (Note 4)	0.15

NOTES:

1. Available rated voltages, capacitance values and tolerances are as follows:

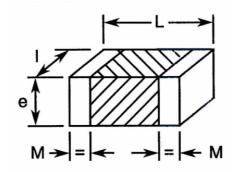
Rated	•	e Range C _n	Tolerance	Value				
Voltage U _R	(pF)		(± %)	Series				
(V)	Min	Max						
400	100	2700	5	E24				
			10	E12				
	100	3300	20	E6				
200	100	100000	5	E24				
			10	E12				
			20	E6				
100	100	150000	5	E24				
			10	E12				
			20	E6				
50	680	470000	5	E24				
			10	E12				
			20	E6				
25	680	820000	5	E24				
			10	E12				
	680	680000	20	E6				
16	680	100000	5	E24				
			10	E12				
			20	E6				

- 2. X7R dielectric. Temperature Characteristic for $V_T = U_R$ is typically -60%.
- 3. See Physical Dimensions.
- 4. Sn/Pb coating, near eutectic with minimum 10% Pb.

1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.


Characteristics	Symbols	Maximum Ratings	Units	Remarks	
Rated Voltage	U_R	16, 25, 50, 100, 200, 400	V	Note 1	
Operating Temperature Range	T _{op}	-55 to +125	°C	Without derating. T _{amb}	
Storage Temperature Range	T_{stg}	-55 to +125	°C		
Soldering Temperature	T _{sol}	+260	°C	Note 2	

NOTES:

- 1. As required; See Component Type Variants and Range of Components.
- 2. Duration 10 seconds maximum.

1.6 PHYSICAL DIMENSIONS

Symbols	Dimensions (mm)				
	Min Max				
L	2.8	Note 1			
I	1.3	Note 1			
е	-	Note 1			
М	0.2	0.75			

NOTES:

1. See Component Type Variants and Range of Components for dimensions L Max, I Max, e Max.

1.7 FUNCTIONAL DIAGRAM

2. **REQUIREMENTS**

2.1 GENERAL

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 <u>Deviations from the Generic Specification</u> None.

2.2 MARKING

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) The ESCC qualified components symbol (for ESCC qualified components only).
- (b) The ESCC Component Number.
- (c) Traceability information.

2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u>

Electrical measurements shall be performed at room, high and low temperatures.

2.3.1 Room Temperature Electrical Measurements

The measurements shall be performed at T_{amb} = +22±3°C.

Characteristics	Symbols	Test Method and	Tolerance	Limits		Units
		Conditions	(± %)	Min	Max	
Capacitance	C _A	ESCC No. 3009				pF
(Note 1)			5	0.95C _n	1.05C _n	
			10	0.9C _n	1.1C _n	
			20	0.8C _n	1.2C _n	
Tangent of Loss Angle	tgδ	ESCC No. 3009	All	-	25 x10 ⁻³	-
Insulation	Rı	ESCC No. 3009	All			
Resistance		For $C_n \le 10000pF$		100	-	GΩ
		For C _n > 10000pF		1000	-	MΩ.μF
Voltage Proof	VP	ESCC No. 3009	All	2.5U _R	-	V

NOTES:

- 1. Capacitance limits for any test performed prior to Burn-in during Screening Tests, for all tolerances, shall be as follows:
 - $C_A = 0.95C_n$ minimum; $1.2C_n$ maximum.

2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

Characteristics	Symbols	Test Method and Conditions (Note 1)	Limits		Units
		(Note 1)	Min	Max	
Temperature Characteristic	TC	ESCC No. 3009 Note 2			%
		For V_T = no voltage applied	-20	+20	
		For $V_T = U_R$	Note 3		

NOTES:

- 1. The measurements shall be performed on a sample of 5 components from each manufacturing lot with 0 failures allowed. In the event of any failure a 100% inspection may be performed.
- 2. In the case of a 100% inspection, a 1% total percent defective is allowed.
- 3. See Component Type Variants and Range of Components for TC limit values for $V_T = U_R$. Temperature Characteristic measurements with rated voltage applied are not required for Variant 07.

2.4 <u>INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS</u>

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22±3°C.

Unless otherwise specified the test methods and test conditions shall be as per the corresponding test defined in Room Temperature Electrical Measurements.

Test Reference per ESCC	Characteristics	Symbols	Limits		Units
No. 3009			Min	Max	
Mounting					
Final Measurements	Capacitance	C_A	Record Values		
	Tangent of Loss Angle	tgδ	Note 1		
	Insulation Resistance	R_{l}	Note 1		
Robustness of Terminations					
Final Measurements	Capacitance	C_A	Note 1		
Climatic Test Sequence					
Initial Measurements	Capacitance	C_A	Notes 1, 2		
Final Measurements	Capacitance	C_A	Note 1		
	Change in Capacitance	$\Delta C_A/C_A$	-10	+10	%
	Tangent of Loss Angle	tgδ	-	50 x10 ⁻³	-
	Insulation Resistance:				
	For $C_n \le 10000pF$	R_{l}	3	-	GΩ
	For C _n > 10000pF	R_{l}	30	-	MΩ.μF
Rapid Change of Temperature					
Initial Measurements	Capacitance	C_A	Notes 1, 2		
Final Measurements	Capacitance	C_A	Note 1		
	Change in Capacitance	$\Delta C_A/C_A$	-10	+10	%
	Tangent of Loss Angle	tgδ		50 x10 ⁻³	

ISSUE 4 DRAFT A

Test Reference per ESCC	Characteristics	Symbols	Limits		Units
No. 3009			Min	Max	
Damp Heat Steady State					
Initial Measurements	Capacitance	C_A	Notes 1, 2		
Final Measurements	Capacitance	C_A	Note 1		
	Change in Capacitance	$\Delta C_A/C_A$	-10	+10	%
	Tangent of Loss Angle	tgδ	-	50 x10 ⁻³	-
	Insulation Resistance:				
	For $C_n \le 10000pF$	R_{l}	3	-	GΩ
	For C _n > 10000pF	R_{l}	30	-	MΩ.μF
Operating Life				•	
Initial Measurements	Capacitance	C_A	Notes 1, 2		
Intermediate Measurements (1000 hours)	Capacitance	C_A	Note 1		
	Change in Capacitance	$\Delta C_A/C_A$	-15	+15	%
	Insulation Resistance:				
	For $C_n \le 10000pF$	R_{l}	10	-	GΩ
	For C _n > 10000pF	R_{l}	100	-	MΩ.μF
Final Measurements	Capacitance	C_A	Note 1		
(2000 hours)	Change in Capacitance	$\Delta C_A/C_A$	-15	+15	%
	Tangent of Loss Angle	tgδ	-	50 x10 ⁻³	-
	Insulation Resistance:				
	For $C_n \le 10000pF$	R_{l}	10	-	GΩ
	For C _n > 10000pF	R_{l}	100	-	MΩ.μF
	Voltage Proof	VP	Note 1		
Capacitance-Temperature	Temperature	TC	Note 3		
Characteristics	Characteristic				

NOTES:

- 1. As specified in Room Temperature Electrical Measurements.
- 2. Capacitance values recorded during Mounting may be used as initial measurements.
- 3. As specified in High and Low Temperatures Electrical Measurements.

2.5 BURN-IN

The requirements for Burn-in are specified in the ESCC Generic Specification. The following conditions shall also apply:

 After Burn-in, the components shall be removed from the chamber and allowed to cool under normal atmospheric conditions for recovery for 24±2 hours.