

# BFY193C to ESCC Detail Specification

- BFY193C contains 6" die T359C
- BFY193 is already in ESCC Detail Specification
- For Comparison refer to similarity matrix:



- All parameters currently covered by ESCC Detail Specification are identical for BFY193 and BFY193C
- Some customers prefer BFY193C due to much better 1/f noise
- Measurement of 1/f noise:

BFY193 [nV/ $\sqrt{\text{Hz}}$ ]: 205 – 1650 (88 pcs.)

BFY193C  $[nV/\sqrt{Hz}]$ : 110 – 170 (50 pcs.)



# Proposal:

### Attach BFY193C to ESCC Detail Specification 5611 006:

■ Implement new variant 08 in the document, all entries for variant 06 are also valid for variant 08

| ESCE | ESCC Detail Specification No. 5611/006 |  | PAGE<br>ISSUE | 6<br>3 |
|------|----------------------------------------|--|---------------|--------|
|------|----------------------------------------|--|---------------|--------|

### TABLE 1(a) - TYPE VARIANTS

| (1)<br>VARIANT | (2)<br>TYPE | (3)<br>CASE | (4)<br>FIGURE | (5)<br>LEAD MATERIAL<br>AND FINISH |
|----------------|-------------|-------------|---------------|------------------------------------|
| 01             | BFY180      | MICRO-X1    | 2             | D2                                 |
| 02             | BFY280      | MICRO-X1    | 2             | D2                                 |
| 03             | BFY181      | MICRO-X1    | 2             | D2                                 |
| 04             | BFY182      | MICRO-X1    | 2             | D2                                 |
| 05             | BFY183      | MICRO-X1    | 2             | D2                                 |
| 06             | BFY193      | MICRO-X1    | 2             | D2                                 |
| 07             | BFY196      | MICRO-X1    | 2             | D2                                 |



### Proposal:

Document only difference between BFY193 and BFY193C by introducing a new row in Tab. 2 for 1/f Noise which will be measured according LTPD15 sample testing per wafer. Limit < 300 nV/Hz</p>

|    |              |      |      |                                                                                                                                                                                                  | L                    |   |     |
|----|--------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|-----|
| 14 | Output Power | Роит | 4(b) | f=2GHz, $V_{CE}$ =5V<br>Variant 05:<br>$I_{C}$ = 30mA, $P_{IN}$ = 7dBm<br>Variant 06:<br>$I_{C}$ = 50mA, $P_{IN}$ = 10dBm<br>Variant 07:<br>$I_{C}$ = 80mA, $P_{IN}$ = 15dBm<br>(Notes 5 and 11) | 13.5<br>16.5<br>18.5 | - | dBm |

#### NOTES

- This is an alternative method of establishing V<sub>(BR)CEO</sub> and assures that V<sub>(BR)CEO</sub> for Variants 01 and 02 is >8V and for Variants 03 to 07 is >12V, if the stated base current is not exceeded.
- 2. Pulsed measurement: Pulse Duration, <1 second. For the purpose of V<sub>FBE</sub> measurement, I<sub>Bmax</sub> may be exceeded during a pulsed measurement provided that the pulse length duration <1 second and I<sub>C</sub> = 0mA.
- 3. The emitter is connected to the ground terminal.
- 4. The collector is connected to the ground terminal.
- 5. Measured in a 50Ω system.
- 6. Small signal measurement.
- 7. Input tuned for NF<sub>min</sub>.
- 8. MAG if K≥1:MSG if K<1.

9. 
$$f_T = f \times |h_{21}|$$
,  $h_{21} = \frac{-2.S_{21}}{\left(1 - S_{11}\right)\left(1 + S_{22}\right) + S_{12}.S_{21}}$ .

- LTPD15 sample testing with the maximum allowed limit reduced by 0.2dB. In case of failure, 100% testing shall be applied.
- 11. LTPD15 sample testing with the minimum allowed limit increased by 0.5dB. In case of failure, 100% testing shall be applied.